Citation: |
Wenhao Ran, Zhuoran Wang, Guozhen Shen. Artificial hawk-eye camera for foveated, tetrachromatic, and dynamic vision[J]. Journal of Semiconductors, 2024, 45(9): 090401. doi: 10.1088/1674-4926/24060010
****
W H Ran, Z R Wang, and G Z Shen, Artificial hawk-eye camera for foveated, tetrachromatic, and dynamic vision[J]. J. Semicond., 2024, 45(9), 090401 doi: 10.1088/1674-4926/24060010
|
Artificial hawk-eye camera for foveated, tetrachromatic, and dynamic vision
DOI: 10.1088/1674-4926/24060010
More Information
-
References
[1] Gu L L, Poddar S, Lin Y J, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581, 278 doi: 10.1038/s41586-020-2285-x[2] Song Y M, Xie Y Z, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497, 95 doi: 10.1038/nature12083[3] Ko H C, Stoykovich M P, Song J Z, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454, 748 doi: 10.1038/nature07113[4] Zhang Z H, Wang S Y, Liu C S, et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat Nanotechnol, 2022, 17, 27 doi: 10.1038/s41565-021-01003-1[5] Park J, Kim M S, Kim J, et al. Avian eye–inspired perovskite artificial vision system for foveated and multispectral imaging. Sci Robot, 2024, 9, eadk6903 doi: 10.1126/scirobotics.adk6903[6] Choi C, Choi M K, Liu S Y, et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat Commun, 2017, 8, 1664 doi: 10.1038/s41467-017-01824-6[7] Kim M S, Lee G J, Choi C, et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nature Electronics, 2020, 3, 546 doi: 10.1038/s41928-020-0429-5[8] Wang Y, Gong Y, Huang S M, et al. Memristor-based biomimetic compound eye for real-time collision detection. Nat Commun, 2021, 12, 5979 doi: 10.1038/s41467-021-26314-8[9] Jayachandran D, Pendurthi R, Sadaf M U K, et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature, 2024, 625, 276 doi: 10.1038/s41586-023-06860-5[10] Kang J H, Shin H, Kim K S, et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat Mater, 2023, 22, 1470 doi: 10.1038/s41563-023-01704-z[11] Hua Q L, Shen G Z. Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chem Soc Rev, 2024, 53, 1316 doi: 10.1039/D3CS00918A -
Proportional views