J. Semicond. >  In Press

ARTICLES

Nanocomposite superstructure of zinc oxide mesocrystal/reduced graphene oxide with effective photoconductivity

Ahmad A. Ahmad, Qais M. Al-Bataineh and Ahmad B. Migdadi

+ Author Affiliations

 Corresponding author: Qais M. Al-Bataineh, qais.albataineh@tu-dortmund.de

DOI: 10.1088/1674-4926/24060019

PDF

Turn off MathJax

Abstract: Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure, which have potentially tunable optical, electronic, and electrical properties suitable for practical applications. Herein, we report an effective method for synthesizing mesocrystal zinc oxide nanorods (ZnONRs). The crystal, surface, and internal structures of the zinc oxide mesocrystals were fully characterized. Mesocrystal zinc oxide nanorods/reduced graphene oxide (ZnONRs/rGO) nanocomposite superstructure were synthesized also using the hydrothermal method. The crystal, surface, chemical, and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized. The optical absorption coefficient, bandgap energy, band structure, and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties. Finally, the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet (UV) photodetection applications. Finally, we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.

Key words: mesocrystalssuperstructuremesocrystal zinc oxide nanorods (ZnONRs)meduced graphene oxide (rGO)ZnONRs/rGO nanocomposite superstructureUV photodetection



[1]
Cölfen H, Antonietti M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed, 2005, 44, 5576 doi: 10.1002/anie.200500496
[2]
Bian Z F, Tachikawa T, Zhang P, et al. A nanocomposite superstructure of metal oxides with effective charge transfer interfaces. Nat Commun, 2014, 5, 3038 doi: 10.1038/ncomms4038
[3]
Zhu G M, Sushko M L, Loring J S, et al. Self-similar mesocrystals form via interface-driven nucleation and assembly. Nature, 2021, 590, 416 doi: 10.1038/s41586-021-03300-0
[4]
Ni B, Gonzalez-Rubio G, Cölfen H. Self-assembly of colloidal nanocrystals into 3D binary mesocrystals. Acc Chem Res, 2022, 55, 1599 doi: 10.1021/acs.accounts.2c00074
[5]
Jenewein C, Schupp S M, Ni B, et al. Tuning the electronic properties of mesocrystals. Small Sci, 2022, 2, 2200014 doi: 10.1002/smsc.202200014
[6]
Geng X, Xu Y J, Wang P, et al. Synthesis of (NH4)2Ta2O3F6 mesocrystals via a hydrothermal route and their conversion to TaO2F and Ta2O5 mesocrystals for photocatalytic dyes degradation. Ceram Int, 2021, 47, 13865 doi: 10.1016/j.ceramint.2021.01.253
[7]
Zhang D P, Ding M Y, Dong B, et al. Hexagonal sodium yttrium fluoride mesocrystals: One-pot hydrothermal synthesis, formation mechanism and multicolor up-/down-converted luminescence for anti-counterfeiting and fingerprint detection. Ceram Int, 2019, 45, 20307 doi: 10.1016/j.ceramint.2019.07.001
[8]
Qiu X L, Wang X L, He Y X, et al. Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. Sci Adv, 2021, 7, eabh3482 doi: 10.1126/sciadv.abh3482
[9]
Yu X, Huang J L, Zhao J J, et al. Efficient visible light photocatalytic antibiotic elimination performance induced by nanostructured Ag/AgCl@Ti3+-TiO2 mesocrystals. Chem Eng J, 2021, 403, 126359 doi: 10.1016/j.cej.2020.126359
[10]
Ramesh R, Schlom D G. Creating emergent phenomena in oxide superlattices. Nat Rev Mater, 2019, 4, 257 doi: 10.1038/s41578-019-0095-2
[11]
Zhao Q F, Ren Y Q, Huang L, et al. In situ Fe(III)-doped TiO2 mesocrystals catalyzed visible light photo-Fenton system. Catal Today, 2023, 410, 309 doi: 10.1016/j.cattod.2022.05.025
[12]
Liu J, Sun L L, Li G L, et al. Ultrasensitive detection of dopamine via electrochemical route on spindle-like α-Fe2O3 Mesocrystals/rGO modified GCE. Mater Res Bull, 2021, 133, 111050 doi: 10.1016/j.materresbull.2020.111050
[13]
Yang D, Zhang W X, Wang Y, et al. Formation mechanisms and electrical properties of perovskite mesocrystals. Ceram Int, 2021, 47, 1479 doi: 10.1016/j.ceramint.2020.08.274
[14]
Yu L Y, Pavlica E, Li R P, et al. Conjugated polymer mesocrystals with structural and optoelectronic coherence and anisotropy in three dimensions. Adv Mat, 2022, 34, 2103002 doi: 10.1002/adma.202103002
[15]
Wu T T, Deng G Q, Zhen C. Metal oxide mesocrystals and mesoporous single crystals: Synthesis, properties and applications in solar energy conversion. J Mater Sci Technol, 2021, 73, 9 doi: 10.1016/j.jmst.2020.09.025
[16]
Ma H L, Fang H J, Li J Q, et al. Transmittance contrast-induced photocurrent: A general strategy for self-powered photodetectors based on MXene electrodes. InfoMat, 2024, 6, e12540 doi: 10.1002/inf2.12540
[17]
Cimada daSilva J, Balazs D M, Dunbar T A, et al. Fundamental processes and practical considerations of lead chalcogenide mesocrystals formed via self-assembly and directed attachment of nanocrystals at a fluid interface. Chem Mater, 2021, 33, 9457 doi: 10.1021/acs.chemmater.1c02910
[18]
Alamdari S, Ghamsari M S, Afarideh H, et al. Preparation and characterization of GO-ZnO nanocomposite for UV detection application. Opt Mater, 2019, 92, 243 doi: 10.1016/j.optmat.2019.04.041
[19]
Velusamy S, Roy A, Mariam E, et al. Effectual visible light photocatalytic reduction of para-nitro phenol using reduced graphene oxide and ZnO composite. Sci Rep, 2023, 13, 9521 doi: 10.1038/s41598-023-36574-7
[20]
Yang D W, Ma H L, Li J Q, et al. Sunscreen-inspired ZnO/PEG composites for flexible ultraviolet photodetectors with a giant on−off ratio. ACS Photonics, 2023, 10, 1320 doi: 10.1021/acsphotonics.2c0195926
[21]
Cuong T V, Tien H N, Luan V H, et al. Solution-processed semitransparent p−n graphene oxide: CNT/ZnO heterojunction diodes for visible-blind UV sensors. Phys Status Solidi A, 2011, 208, 943 doi: 10.1002/pssa.201026553
[22]
Martin M, Prasad N, Sivalingam M M, et al. Optical, phonon properties of ZnO−PVA, ZnO−GO−PVA nanocomposite free standing polymer films for UV sensing. J Mater Sci Mater Electron, 2018, 29, 365 doi: 10.1007/s10854-017-7925-z
[23]
Azimi H R, Ghoranneviss M, Elahi S M, et al. Photovoltaic and UV detector applications of ZnS/rGO nanocomposites synthesized by a green method. Ceram Int, 2016, 42, 14094 doi: 10.1016/j.ceramint.2016.06.018
[24]
Zare M, Safa S, Azimirad R, et al. Graphene oxide incorporated ZnO nanostructures as a powerful ultraviolet composite detector. J Mater Sci Mater Electron, 2017, 28, 6919 doi: 10.1007/s10854-017-6392-x
[25]
Feng W L, Wang B C, Huang P, et al. Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine (HMTA): Understanding the role of HMTA in the formation of ZnO crystals. Mater Sci Semicond Process, 2016, 41, 462 doi: 10.1016/j.mssp.2015.10.017
[26]
Ahmad A A, Migdadi A B, Alsaad A M, et al. Computational and experimental characterizations of annealed Cu2ZnSnS4 thin films. Heliyon, 2021, 8, e08683 doi: 10.1016/j.heliyon.2021.e0868329
[27]
Ahmad A A, Bani-Salameh A A, Al-Bataineh Q M, et al. Optical, structural and morphological properties of synthesized PANI-CSA-PEO-based GaN nanocomposite films for optoelectronic applications. Polym Bull, 2023, 80, 809 doi: 10.1007/s00289-021-04033-w
[28]
Al-Bataineh Q M, Ahmad A A, Aljarrah I A, et al. Hidden impurities in transparent conducting oxides: Study of vacancies-related defects and impurities in (Cu−Ni) Co-doped ZnO films. Appl Phys A, 2022, 128, 965 doi: 10.1007/s00339-022-06028-4
[29]
Chang B Y S, Huang N M, An’amt M N, et al. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite. Int J Nanomedicine, 2012, 7, 3379 doi: 10.2147/IJN.S2818940
[30]
Ababneh A, Dagamseh A M K, Albataineh Z, et al. Optical and structural properties of aluminium nitride thin-films synthesized by DC-magnetron sputtering technique at different sputtering pressures. Microsyst Technol, 2021, 27, 3149 doi: 10.1007/s00542-020-05081-4
[31]
Akbar N, Aslam Z, Siddiqui R, et al. Zinc oxide nanoparticles conjugated with clinically-approved medicines as potential antibacterial molecules. AMB Express, 2021, 11, 104 doi: 10.1186/s13568-021-01261-1
[32]
Ruidíaz-Martínez M, Álvarez M A, López-Ramón M V, et al. Hydrothermal synthesis of rGO-TiO2 composites as high-performance UV photocatalysts for ethylparaben degradation. Catalysts, 2020, 10, 520 doi: 10.3390/catal10050520
[33]
Al-Bataineh Q M, Ababneh R, Bahti A, et al. Effect of hydrogen-related shallow donor on the physical and chemical properties of Ag-doped ZnO nanostructures. J Mater Sci Mater Electron, 2022, 33, 17434 doi: 10.1007/s10854-022-08513-1
[34]
Ahmad A A, Alsaad A M, Aljarrah I A, et al. Optical, electronic, and structural properties of different nanostructured ZnO morphologies. Eur Phys J Plus, 2022, 137, 752 doi: 10.1140/epjp/s13360-022-02967-2
[35]
Al-Bataineh Q M, Aljarrah I A, Ahmad A A, et al. Investigation of the doping mechanism and electron transition bands of PEO/KMnO4 complex composite films. J Mater Sci Mater Electron, 2022, 33, 14051 doi: 10.1007/s10854-022-08336-0
[36]
Rabieh S, Nassimi K, Bagheri M. Synthesis of hierarchical ZnO−reduced graphene oxide nanocomposites with enhanced adsorption−photocatalytic performance. Mater Lett, 2016, 162, 28 doi: 10.1016/j.matlet.2015.09.111
[37]
Al-Bataineh Q M, Ahmad A A, Alsaad A M, et al. Optical characterizations of PMMA/metal oxide nanoparticles thin films: Bandgap engineering using a novel derived model. Heliyon, 2021, 7, e05952 doi: 10.1016/j.heliyon.2021.e05952
[38]
Hassanien A S, Akl A A. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct, 2016, 89, 153 doi: 10.1016/j.spmi.2015.10.044
[39]
Paul R, Gayen R N, Biswas S, et al. Enhanced UV detection by transparent graphene oxide/ZnO composite thin films. RSC Adv, 2016, 6, 61661 doi: 10.1039/C6RA05039E
[40]
Hussain Z T, Abdulridha W M, Jabor A A, et al. Investigating the effect of aluminum dopping on the structural, optical, electrical, and sensing properties of ZnO films. Adv Mater Process Technol, 2022, 8, 1715 doi: 10.1080/2374068X.2020.1870081
[41]
Bilgin V, Sarica E, Demirselcuk B, et al. Iron doped ZnO thin films deposited by ultrasonic spray pyrolysis: Structural, morphological, optical, electrical and magnetic investigations. J Mater Sci Mater Electron, 2018, 29, 17542 doi: 10.1007/s10854-018-9855-9
[42]
Tachikawa T, Majima T. Metal oxide mesocrystals with tailored structures and properties for energy conversion and storage applications. NPG Asia Mater, 2014, 6, e100 doi: 10.1038/am.2014.21
[43]
Dhara S, Giri P. Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires. Nanoscale Res Lett, 2011, 6, 504 doi: 10.1186/1556-276X-6-504
[44]
Yang T T, Sun B, Ni L, et al. The mechanism of photocurrent enhancement of ZnO ultraviolet photodetector by reduced graphene oxide. Curr Appl Phys, 2018, 18, 859 doi: 10.1016/j.cap.2018.04.010
[45]
Lu Q Q, Pan X H, Wang W H, et al. Ultraviolet photodetector based on nanostructured ZnO-reduced graphene oxide composite. Appl Phys A, 2018, 124, 733 doi: 10.1007/s00339-018-2155-7
[46]
Li Y Y, Cheng C W, Dong X, et al. Facile fabrication of UV photodetectors based on ZnO nanorod networks across trenched electrodes. J Semicond, 2009, 30, 063004 doi: 10.1088/1674-4926/30/6/063004
[47]
Azarang M, Shuhaimi A, Yousefi R, et al. Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB. Ceram Int, 2014, 40, 10217 doi: 10.1016/j.ceramint.2014.02.109
[48]
Chen W B, Liu X Y, Liu Y S, et al. Synthesis of microcapsules with polystyrene/ZnO hybrid shell by Pickering emulsion polymerization. Colloid Polym Sci, 2010, 288, 1393 doi: 10.1007/s00396-010-2277-8
[49]
Avinash Chunduri L A, Kurdekar A, Eswarappa Pradeep B, et al. Streptavidin conjugated ZnO nanoparticles for early detection of HIV infection. Adv Mater Lett, 2017, 8, 472 doi: 10.5185/amlett.2017.6579
[50]
Sandoval S, Kumar N, Sundaresan A, et al. Enhanced thermal oxidation stability of reduced graphene oxide by nitrogen doping. Chem, 2014, 20, 11999 doi: 10.1002/chem.201403833
[51]
Kim H S, Yang B W, Stylianakis M M, et al. Reduced graphene oxide improves moisture and thermal stability of perovskite solar cells. Cell Rep Phys Sci, 2020, 1, 100053 doi: 10.1016/j.xcrp.2020.100053
[52]
Lei Y, Gu L Y, He W W, et al. Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture. J Mater Chem A, 2016, 4, 5474 doi: 10.1039/C6TA00614K
Fig. 1.  (Colour online) Schematic of the synthesis process.

Fig. 2.  (Colour online) Mesocrystal ZnO nanorods. (a) Schematic diagram of classical and non-classical crystallization. (b) SEM image of mesocrystal ZnONRs at a scale of 10 µm. (c) SEM image of mesocrystal ZnONRs at a scale of 5 µm. (d) Enlarged SEM image of mesocrystal ZnONRs at a scale of 500 nm containing small ZnONPs. (e) XRF scan of mesocrystal ZnONRs. (f) XRD pattern of mesocrystal ZnONRs.

Fig. 3.  (Colour online) Structural properties of ZnONRs/rGO nanocomposite superstructure. (a) XRD patterns of ZnONRs, rGO, and ZnONRs/rGO nanocomposite superstructure in the diffraction angle range of 5°−60°. (b) FTIR spectra of ZnONRs, rGO, and ZnONRs/rGO nanocomposite superstructure in the 400−4000 cm−1 wavenumber range. SEM images of rGO at a scale of (c) 1 µm and (d) 500 nm. SEM images of ZnONRs/rGO nanocomposite superstructure at a scale of (e) 30 µm and (f) 500 nm.

Fig. 4.  (Colour online) Optical and electrical properties of mesocrystal ZnONRs and ZnONRs/rGO nanocomposite superstructure. (a) Optical transmittance spectra of mesocrystal ZnONRs and ZnONRs/rGO nanocomposite superstructure. (b) Absorption coefficient of mesocrystal ZnONRs and ZnONRs/rGO nanocomposite superstructure. (c) Band structure of mesocrystal ZnONRs and ZnONRs/rGO nanocomposite superstructure. (d) Schematic diagram of transitions in ZnONRs/rGO nanocomposite superstructure. The electrical conductivity maps of (e) mesocrystal ZnONRs and (f) ZnONRs/rGO nanocomposite superstructure.

Fig. 5.  (Colour online) Photoconductivity of mesocrystal ZnONRs and ZnONRs/rGO nanocomposite superstructure. (a) Schematic representation of the photoconductivity measurement. The photoconductivity response of (b) mesocrystal ZnONRs and (c) ZnONRs/rGO nanocomposite superstructure by turning on/off the UV light.

[1]
Cölfen H, Antonietti M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed, 2005, 44, 5576 doi: 10.1002/anie.200500496
[2]
Bian Z F, Tachikawa T, Zhang P, et al. A nanocomposite superstructure of metal oxides with effective charge transfer interfaces. Nat Commun, 2014, 5, 3038 doi: 10.1038/ncomms4038
[3]
Zhu G M, Sushko M L, Loring J S, et al. Self-similar mesocrystals form via interface-driven nucleation and assembly. Nature, 2021, 590, 416 doi: 10.1038/s41586-021-03300-0
[4]
Ni B, Gonzalez-Rubio G, Cölfen H. Self-assembly of colloidal nanocrystals into 3D binary mesocrystals. Acc Chem Res, 2022, 55, 1599 doi: 10.1021/acs.accounts.2c00074
[5]
Jenewein C, Schupp S M, Ni B, et al. Tuning the electronic properties of mesocrystals. Small Sci, 2022, 2, 2200014 doi: 10.1002/smsc.202200014
[6]
Geng X, Xu Y J, Wang P, et al. Synthesis of (NH4)2Ta2O3F6 mesocrystals via a hydrothermal route and their conversion to TaO2F and Ta2O5 mesocrystals for photocatalytic dyes degradation. Ceram Int, 2021, 47, 13865 doi: 10.1016/j.ceramint.2021.01.253
[7]
Zhang D P, Ding M Y, Dong B, et al. Hexagonal sodium yttrium fluoride mesocrystals: One-pot hydrothermal synthesis, formation mechanism and multicolor up-/down-converted luminescence for anti-counterfeiting and fingerprint detection. Ceram Int, 2019, 45, 20307 doi: 10.1016/j.ceramint.2019.07.001
[8]
Qiu X L, Wang X L, He Y X, et al. Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. Sci Adv, 2021, 7, eabh3482 doi: 10.1126/sciadv.abh3482
[9]
Yu X, Huang J L, Zhao J J, et al. Efficient visible light photocatalytic antibiotic elimination performance induced by nanostructured Ag/AgCl@Ti3+-TiO2 mesocrystals. Chem Eng J, 2021, 403, 126359 doi: 10.1016/j.cej.2020.126359
[10]
Ramesh R, Schlom D G. Creating emergent phenomena in oxide superlattices. Nat Rev Mater, 2019, 4, 257 doi: 10.1038/s41578-019-0095-2
[11]
Zhao Q F, Ren Y Q, Huang L, et al. In situ Fe(III)-doped TiO2 mesocrystals catalyzed visible light photo-Fenton system. Catal Today, 2023, 410, 309 doi: 10.1016/j.cattod.2022.05.025
[12]
Liu J, Sun L L, Li G L, et al. Ultrasensitive detection of dopamine via electrochemical route on spindle-like α-Fe2O3 Mesocrystals/rGO modified GCE. Mater Res Bull, 2021, 133, 111050 doi: 10.1016/j.materresbull.2020.111050
[13]
Yang D, Zhang W X, Wang Y, et al. Formation mechanisms and electrical properties of perovskite mesocrystals. Ceram Int, 2021, 47, 1479 doi: 10.1016/j.ceramint.2020.08.274
[14]
Yu L Y, Pavlica E, Li R P, et al. Conjugated polymer mesocrystals with structural and optoelectronic coherence and anisotropy in three dimensions. Adv Mat, 2022, 34, 2103002 doi: 10.1002/adma.202103002
[15]
Wu T T, Deng G Q, Zhen C. Metal oxide mesocrystals and mesoporous single crystals: Synthesis, properties and applications in solar energy conversion. J Mater Sci Technol, 2021, 73, 9 doi: 10.1016/j.jmst.2020.09.025
[16]
Ma H L, Fang H J, Li J Q, et al. Transmittance contrast-induced photocurrent: A general strategy for self-powered photodetectors based on MXene electrodes. InfoMat, 2024, 6, e12540 doi: 10.1002/inf2.12540
[17]
Cimada daSilva J, Balazs D M, Dunbar T A, et al. Fundamental processes and practical considerations of lead chalcogenide mesocrystals formed via self-assembly and directed attachment of nanocrystals at a fluid interface. Chem Mater, 2021, 33, 9457 doi: 10.1021/acs.chemmater.1c02910
[18]
Alamdari S, Ghamsari M S, Afarideh H, et al. Preparation and characterization of GO-ZnO nanocomposite for UV detection application. Opt Mater, 2019, 92, 243 doi: 10.1016/j.optmat.2019.04.041
[19]
Velusamy S, Roy A, Mariam E, et al. Effectual visible light photocatalytic reduction of para-nitro phenol using reduced graphene oxide and ZnO composite. Sci Rep, 2023, 13, 9521 doi: 10.1038/s41598-023-36574-7
[20]
Yang D W, Ma H L, Li J Q, et al. Sunscreen-inspired ZnO/PEG composites for flexible ultraviolet photodetectors with a giant on−off ratio. ACS Photonics, 2023, 10, 1320 doi: 10.1021/acsphotonics.2c0195926
[21]
Cuong T V, Tien H N, Luan V H, et al. Solution-processed semitransparent p−n graphene oxide: CNT/ZnO heterojunction diodes for visible-blind UV sensors. Phys Status Solidi A, 2011, 208, 943 doi: 10.1002/pssa.201026553
[22]
Martin M, Prasad N, Sivalingam M M, et al. Optical, phonon properties of ZnO−PVA, ZnO−GO−PVA nanocomposite free standing polymer films for UV sensing. J Mater Sci Mater Electron, 2018, 29, 365 doi: 10.1007/s10854-017-7925-z
[23]
Azimi H R, Ghoranneviss M, Elahi S M, et al. Photovoltaic and UV detector applications of ZnS/rGO nanocomposites synthesized by a green method. Ceram Int, 2016, 42, 14094 doi: 10.1016/j.ceramint.2016.06.018
[24]
Zare M, Safa S, Azimirad R, et al. Graphene oxide incorporated ZnO nanostructures as a powerful ultraviolet composite detector. J Mater Sci Mater Electron, 2017, 28, 6919 doi: 10.1007/s10854-017-6392-x
[25]
Feng W L, Wang B C, Huang P, et al. Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine (HMTA): Understanding the role of HMTA in the formation of ZnO crystals. Mater Sci Semicond Process, 2016, 41, 462 doi: 10.1016/j.mssp.2015.10.017
[26]
Ahmad A A, Migdadi A B, Alsaad A M, et al. Computational and experimental characterizations of annealed Cu2ZnSnS4 thin films. Heliyon, 2021, 8, e08683 doi: 10.1016/j.heliyon.2021.e0868329
[27]
Ahmad A A, Bani-Salameh A A, Al-Bataineh Q M, et al. Optical, structural and morphological properties of synthesized PANI-CSA-PEO-based GaN nanocomposite films for optoelectronic applications. Polym Bull, 2023, 80, 809 doi: 10.1007/s00289-021-04033-w
[28]
Al-Bataineh Q M, Ahmad A A, Aljarrah I A, et al. Hidden impurities in transparent conducting oxides: Study of vacancies-related defects and impurities in (Cu−Ni) Co-doped ZnO films. Appl Phys A, 2022, 128, 965 doi: 10.1007/s00339-022-06028-4
[29]
Chang B Y S, Huang N M, An’amt M N, et al. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite. Int J Nanomedicine, 2012, 7, 3379 doi: 10.2147/IJN.S2818940
[30]
Ababneh A, Dagamseh A M K, Albataineh Z, et al. Optical and structural properties of aluminium nitride thin-films synthesized by DC-magnetron sputtering technique at different sputtering pressures. Microsyst Technol, 2021, 27, 3149 doi: 10.1007/s00542-020-05081-4
[31]
Akbar N, Aslam Z, Siddiqui R, et al. Zinc oxide nanoparticles conjugated with clinically-approved medicines as potential antibacterial molecules. AMB Express, 2021, 11, 104 doi: 10.1186/s13568-021-01261-1
[32]
Ruidíaz-Martínez M, Álvarez M A, López-Ramón M V, et al. Hydrothermal synthesis of rGO-TiO2 composites as high-performance UV photocatalysts for ethylparaben degradation. Catalysts, 2020, 10, 520 doi: 10.3390/catal10050520
[33]
Al-Bataineh Q M, Ababneh R, Bahti A, et al. Effect of hydrogen-related shallow donor on the physical and chemical properties of Ag-doped ZnO nanostructures. J Mater Sci Mater Electron, 2022, 33, 17434 doi: 10.1007/s10854-022-08513-1
[34]
Ahmad A A, Alsaad A M, Aljarrah I A, et al. Optical, electronic, and structural properties of different nanostructured ZnO morphologies. Eur Phys J Plus, 2022, 137, 752 doi: 10.1140/epjp/s13360-022-02967-2
[35]
Al-Bataineh Q M, Aljarrah I A, Ahmad A A, et al. Investigation of the doping mechanism and electron transition bands of PEO/KMnO4 complex composite films. J Mater Sci Mater Electron, 2022, 33, 14051 doi: 10.1007/s10854-022-08336-0
[36]
Rabieh S, Nassimi K, Bagheri M. Synthesis of hierarchical ZnO−reduced graphene oxide nanocomposites with enhanced adsorption−photocatalytic performance. Mater Lett, 2016, 162, 28 doi: 10.1016/j.matlet.2015.09.111
[37]
Al-Bataineh Q M, Ahmad A A, Alsaad A M, et al. Optical characterizations of PMMA/metal oxide nanoparticles thin films: Bandgap engineering using a novel derived model. Heliyon, 2021, 7, e05952 doi: 10.1016/j.heliyon.2021.e05952
[38]
Hassanien A S, Akl A A. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct, 2016, 89, 153 doi: 10.1016/j.spmi.2015.10.044
[39]
Paul R, Gayen R N, Biswas S, et al. Enhanced UV detection by transparent graphene oxide/ZnO composite thin films. RSC Adv, 2016, 6, 61661 doi: 10.1039/C6RA05039E
[40]
Hussain Z T, Abdulridha W M, Jabor A A, et al. Investigating the effect of aluminum dopping on the structural, optical, electrical, and sensing properties of ZnO films. Adv Mater Process Technol, 2022, 8, 1715 doi: 10.1080/2374068X.2020.1870081
[41]
Bilgin V, Sarica E, Demirselcuk B, et al. Iron doped ZnO thin films deposited by ultrasonic spray pyrolysis: Structural, morphological, optical, electrical and magnetic investigations. J Mater Sci Mater Electron, 2018, 29, 17542 doi: 10.1007/s10854-018-9855-9
[42]
Tachikawa T, Majima T. Metal oxide mesocrystals with tailored structures and properties for energy conversion and storage applications. NPG Asia Mater, 2014, 6, e100 doi: 10.1038/am.2014.21
[43]
Dhara S, Giri P. Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires. Nanoscale Res Lett, 2011, 6, 504 doi: 10.1186/1556-276X-6-504
[44]
Yang T T, Sun B, Ni L, et al. The mechanism of photocurrent enhancement of ZnO ultraviolet photodetector by reduced graphene oxide. Curr Appl Phys, 2018, 18, 859 doi: 10.1016/j.cap.2018.04.010
[45]
Lu Q Q, Pan X H, Wang W H, et al. Ultraviolet photodetector based on nanostructured ZnO-reduced graphene oxide composite. Appl Phys A, 2018, 124, 733 doi: 10.1007/s00339-018-2155-7
[46]
Li Y Y, Cheng C W, Dong X, et al. Facile fabrication of UV photodetectors based on ZnO nanorod networks across trenched electrodes. J Semicond, 2009, 30, 063004 doi: 10.1088/1674-4926/30/6/063004
[47]
Azarang M, Shuhaimi A, Yousefi R, et al. Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB. Ceram Int, 2014, 40, 10217 doi: 10.1016/j.ceramint.2014.02.109
[48]
Chen W B, Liu X Y, Liu Y S, et al. Synthesis of microcapsules with polystyrene/ZnO hybrid shell by Pickering emulsion polymerization. Colloid Polym Sci, 2010, 288, 1393 doi: 10.1007/s00396-010-2277-8
[49]
Avinash Chunduri L A, Kurdekar A, Eswarappa Pradeep B, et al. Streptavidin conjugated ZnO nanoparticles for early detection of HIV infection. Adv Mater Lett, 2017, 8, 472 doi: 10.5185/amlett.2017.6579
[50]
Sandoval S, Kumar N, Sundaresan A, et al. Enhanced thermal oxidation stability of reduced graphene oxide by nitrogen doping. Chem, 2014, 20, 11999 doi: 10.1002/chem.201403833
[51]
Kim H S, Yang B W, Stylianakis M M, et al. Reduced graphene oxide improves moisture and thermal stability of perovskite solar cells. Cell Rep Phys Sci, 2020, 1, 100053 doi: 10.1016/j.xcrp.2020.100053
[52]
Lei Y, Gu L Y, He W W, et al. Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture. J Mater Chem A, 2016, 4, 5474 doi: 10.1039/C6TA00614K
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 157 Times PDF downloads: 18 Times Cited by: 0 Times

    History

    Received: 20 June 2024 Revised: 04 July 2024 Online: Accepted Manuscript: 20 August 2024Uncorrected proof: 23 August 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ahmad A. Ahmad, Qais M. Al-Bataineh, Ahmad B. Migdadi. Nanocomposite superstructure of zinc oxide mesocrystal/reduced graphene oxide with effective photoconductivity[J]. Journal of Semiconductors, 2024, In Press. doi: 10.1088/1674-4926/24060019 ****A A Ahmad, Q M Al-Bataineh, and A B Migdadi, Nanocomposite superstructure of zinc oxide mesocrystal/reduced graphene oxide with effective photoconductivity[J]. J. Semicond., 2024, 45(11), 112701 doi: 10.1088/1674-4926/24060019
      Citation:
      Ahmad A. Ahmad, Qais M. Al-Bataineh, Ahmad B. Migdadi. Nanocomposite superstructure of zinc oxide mesocrystal/reduced graphene oxide with effective photoconductivity[J]. Journal of Semiconductors, 2024, In Press. doi: 10.1088/1674-4926/24060019 ****
      A A Ahmad, Q M Al-Bataineh, and A B Migdadi, Nanocomposite superstructure of zinc oxide mesocrystal/reduced graphene oxide with effective photoconductivity[J]. J. Semicond., 2024, 45(11), 112701 doi: 10.1088/1674-4926/24060019

      Nanocomposite superstructure of zinc oxide mesocrystal/reduced graphene oxide with effective photoconductivity

      DOI: 10.1088/1674-4926/24060019
      More Information
      • Ahmad A. Ahmad received his doctoral degree from University of Nebraska−Lincoln, USA, in 1996. He is currently a Professor in Jordan University of Science and Technology. His current research interests include nanotechnology and thin film technology and their practical applications, especially, optical, electronic, electrical, electrochemical, and catalysis
      • Qais M. Al-Bataineh is currently a PhD student in Technical University of Dortmund. His current research interests include nanotechnology and thin film technology and their practical applications, especially, optical, electronic, electrical, electrochemical, and catalysis
      • Corresponding author: qais.albataineh@tu-dortmund.de
      • Received Date: 2024-06-20
      • Revised Date: 2024-07-04
      • Available Online: 2024-08-20

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return