Citation: |
Iman Biswas, Arka Dey, Jean Michel Nunzi, Nilanjan Halder, Aniruddha Mondal. Charge transport properties and variable photo-switching of three-terminal Cs2AgBiBr6 device[J]. Journal of Semiconductors, 2024, In Press. doi: 10.1088/1674-4926/24060032
****
I Biswas, A Dey, J M Nunzi, N Halder, and A Mondal, Charge transport properties and variable photo-switching of three-terminal Cs2AgBiBr6 device[J]. J. Semicond., 2024, 45(11), 112801 doi: 10.1088/1674-4926/24060032
|
Charge transport properties and variable photo-switching of three-terminal Cs2AgBiBr6 device
DOI: 10.1088/1674-4926/24060032
More Information
-
Abstract
In this study, we present an in-depth exploration of charge transport phenomena and variable photo-switching characteristics in a novel double-perovskite-based three-terminal device. The Cs2AgBiBr6 thin film (TF) was synthesized through a three-step thermal evaporation process followed by precise open-air annealing, ensuring superior film quality as confirmed by structural and morphological characterizations. Photoluminescence spectroscopy revealed distinct emissions at 2.28 and 2.07 eV, indicative of both direct and indirect electronic transitions. Our device exhibited space-charge limited current (SCLC) behaviour beyond 0.35 V, aligning with the relationship $ {\text{Current}\left(I\right)\propto\text{Voltage\ }\left(V\right)^m }$, where the exponent m transitioned from ≤1 to >1. Detailed analysis of Schottky parameters within the trap-filled limit (TFL) regime was conducted, accounting for variations in temperature and optical power. Significantly, the self-powered photodetector demonstrated outstanding performance under illumination. The sensitivity of the device was finely tunable via the applied bias voltages at the third terminal. Notably, an optimal bias voltage of ±100 μV yielded maximum responsivity (R) of 0.48 A/W and an impressive detectivity (D*) of 1.07 × 109 Jones, highlighting the potential of this double-perovskite-based device for advanced optoelectronic applications. -
References
[1] Min H, Lee D Y, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598, 444 doi: 10.1038/s41586-021-03964-8[2] Fu Y, Zhu H, Chen J, et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat Rev Mater, 2019, 4, 169 doi: 10.1038/s41578-019-0080-9[3] Rhee S, An K, Kang K T. Recent advances and challenges in halide perovskite crystals in optoelectronic devices from solar cells to other applications. Crystals, 2020, 11, 39 doi: 10.3390/cryst11010039[4] Rezaee E, Kutsarov D, Li B W, et al. A route towards the fabrication of large-scale and high-quality perovskite films for optoelectronic devices. Sci Rep, 2022, 12, 7411 doi: 10.1038/s41598-022-10790-z[5] Hao J, Xiao X. Recent development of optoelectronic application based on metal halide perovskite nanocrystals. Front Chem, 2022, 9, 822106 doi: 10.3389/fchem.2021.822106[6] Ouedraogo N A N, Chen Y, Xiao Y Y, et al. Stability of all-inorganic perovskite solar cells. Nano Energy, 2020, 67, 104249 doi: 10.1016/j.nanoen.2019.104249[7] Li Z, Klein T R, Kim D H, et al. Scalable fabrication of perovskite solar cells. Nat Rev Mater, 2018, 3, 18017 doi: 10.1038/natrevmats.2018.17[8] Wang S, Yousefi Amin A A, Wu L, et al. Perovskite nanocrystals: Synthesis, stability, and optoelectronic applications. Small Struct, 2021, 2, 2170009 doi: 10.1002/sstr.202170009[9] van Vliet K M. Noise limitations in solid State photodetectors. Appl Opt, 1967, 6, 1145 doi: 10.1364/AO.6.001145[10] Li C, Li J, Li Z, et al. High-performance photodetectors based on nanostructured perovskites. Nanomaterials, 2021, 11, 1038 doi: 10.3390/nano11041038[11] Sun T, Chen T, Chen J, et al. High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode. Nanoscale, 2023, 15, 7803 doi: 10.1039/D3NR00410D[12] Mei F, Sun D, Mei S, et al. Recent progress in perovskite-based photodetectors: The design of materials and structures. Adv Phys X, 2019, 4, 1592709 doi: 10.1080/23746149.2019.1592709[13] Zhang F, Li C, Li Z, et al. Recent progress in three-terminal artificial synapses based on 2D materials: From mechanisms to applications. Microsyst Nanoeng, 2023, 9, 16 doi: 10.1038/s41378-023-00487-2[14] Bielecki Z, Achtenberg K, Kopytko M, et al. Review of photodetectors characterization methods. Bull Pol Acad Sci Tech Sci, 2022, 140534 doi: 10.24425/Bpasts.2022.140534[15] Shin J, Yoo H. Photogating effect-driven photodetectors and their emerging applications. Nanomaterials, 2023, 13, 882 doi: 10.3390/nano13050882[16] Miao J, Zhang F. Recent progress on highly sensitive perovskite photodetectors. J Mater Chem C, 2019, 7, 1741 doi: 10.1039/C8TC06089D[17] Wang J, Liu F, Wang G, et al. Novel organic-perovskite hybrid structure forward photo field effect transistor. Org Electron, 2016, 38, 158 doi: 10.1016/j.orgel.2016.08.016[18] Chin X Y, Cortecchia D, Yin J, et al. Lead iodide perovskite light-emitting field-effect transistor. Nat Commun, 2015, 6, 7383 doi: 10.1038/ncomms8383[19] Mathews S, Ramesh R, Venkatesan T, et al. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science, 1997, 276, 238 doi: 10.1126/science.276.5310.238[20] Liu Y, Chen P A, Hu Y. Recent developments in fabrication and performance of metal halide perovskite field-effect transistors. J Mater Chem C, 2020, 8, 16691 doi: 10.1039/D0TC03693E[21] Xie C, Liu C K, Loi H L, et al. Perovskite-based phototransistors and hybrid photodetectors. Adv Funct Mater, 2020, 30, 1903907 doi: 10.1002/adfm.201903907[22] Zhou J, Huang J. Photodetectors based on organic–inorganic hybrid lead halide perovskites. Adv Sci, 2018, 5, 1700256 doi: 10.1002/advs.201700256[23] Wu T, Pisula W, Rashid M Y A, et al. Application of perovskite-structured materials in field-effect transistors. Adv Electron Mater, 2019, 5, 1900444 doi: 10.1002/aelm.201900444[24] Cai W, Wang H, Zang Z, et al. 2D perovskites for field-effect transistors. Sci Bull, 2021, 66, 648 doi: 10.1016/j.scib.2020.11.014[25] Paulus F, Tyznik C, Jurchescu O D, et al. Switched-on: Progress, challenges, and opportunities in metal halide perovskite transistors. Adv Funct Materials, 2021, 31, 2101029 doi: 10.1002/adfm.202101029[26] Noel N K, Stranks S D, Abate A, et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci, 2014, 7, 3061 doi: 10.1039/C4EE01076K[27] Lyu M, Yun J H, Chen P, et al. Addressing toxicity of lead: Progress and applications of low-toxic metal halide perovskites and their derivatives. Adv Energy Mater, 2017, 7, 1602512 doi: 10.1002/aenm.201602512[28] Cao F, Li L. Progress of lead-free halide perovskites: From material synthesis to photodetector application. Adv Funct Mater, 2021, 31, 2008275 doi: 10.1002/adfm.202008275[29] Yang X, Wang W, Ran R, et al. Recent advances in Cs2AgBiBr6-based halide double perovskites as lead-free and inorganic light absorbers for perovskite solar cells. Energy Fuels, 2020, 34, 10513 doi: 10.1021/acs.energyfuels.0c02236[30] Li B, Wu X, Zhang S, et al. Efficient and stable Cs2AgBiBr6 double perovskite solar cells through in situ surface modulation. Chem Eng J, 2022, 446, 137144 doi: 10.1016/j.cej.2022.137144[31] Li Z, Senanayak S P, Dai L, et al. Understanding the role of grain boundaries on charge-carrier and ion transport in Cs2AgBiBr6 thin films. Adv Funct Mater, 2021, 31, 2104981 doi: 10.1002/adfm.202104981[32] Abiram G, Gourji F H, Pitchaiya S, et al. Air processed Cs2AgBiBr6 lead-free double perovskite high-mobility thin-film field-effect transistors. Sci Rep, 2022, 12, 2455 doi: 10.1038/s41598-022-06319-z[33] Biswas I, Dey A, Dalal A, et al. Stable, self-biased Cs2AgBiBr6 thin-film based photodetector by three-step vapor-deposition. J Alloys Compd, 2024, 976, 172903 doi: 10.1016/j.jallcom.2023.172903[34] Daem N, Dewalque J, Lang F, et al. Spray-coated lead-free Cs2AgBiBr6 double perovskite solar cells with high open-circuit voltage. Sol RRL, 2021, 5, 2100422 doi: 10.1002/solr.202100422[35] Ji F, Klarbring J, Wang F, et al. Lead-free halide double perovskite Cs2AgBiBr6 with decreased band gap. Angew Chem Int Ed, 2020, 59, 15191 doi: 10.1002/anie.202005568[36] Hoye R L Z, Eyre L, Wei F, et al. Fundamental carrier lifetime exceeding 1 µs in Cs2AgBiBr6 double perovskite. Adv Mater Interfaces, 2018, 5, 1800464 doi: 10.1002/admi.201800464[37] Zelewski S J, Urban J M, Surrente A, et al. Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs2AgBiBr6. J Mater Chem C, 2019, 7, 8350 doi: 10.1039/C9TC02402F[38] Wright A D, Buizza L R V, Savill K J, et al. Ultrafast excited-state localization in Cs2AgBiBr6 double perovskite. J Phys Chem Lett, 2021, 12, 3352 doi: 10.1021/acs.jpclett.1c00653[39] Zhang Z, Chung C C, Huang Z, et al. Towards radiation detection using Cs2AgBiBr6 double perovskite single crystals. Mater Lett, 2020, 269, 127667 doi: 10.1016/j.matlet.2020.127667[40] Aydoğan, Sağlam M, Türüt A. The temperature dependence of current–voltage characteristics of the Au/Polypyrrole/p-Si/Al heterojunctions. J Phys: Condens Matter, 2006, 18, 2665 doi: 10.1088/0953-8984/18/9/006[41] Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519 doi: 10.1126/science.aaa2725[42] Dey A, Layek A, Roychowdhury A, et al. Investigation of charge transport properties in less defective nanostructured ZnO based Schottky diode. RSC Adv, 2015, 5, 36560 doi: 10.1039/C4RA16828C[43] Murgulov V, Schweinle C, Daub M, et al. Double perovskite Cs2AgBiBr6 radiation sensor: Synthesis and characterization of single crystals. J Mater Sci, 2022, 57, 2758 doi: 10.1007/s10853-021-06847-5[44] Taşçıoğlu İ, Aydemir U, Altındal Ş. The explanation of barrier height inhomogeneities in Au/n-Si Schottky barrier diodes with organic thin interfacial layer. J Appl Phys, 2010, 108, 064506 doi: 10.1063/1.3468376[45] Ocak Y S, Kulakci M, Kılıçoğlu T, et al. Current–voltage and capacitance–voltage characteristics of a Sn/Methylene Blue/p-Si Schottky diode. Synth Met, 2009, 159, 1603 doi: 10.1016/j.synthmet.2009.04.024[46] Rathod K N, Dhruv D, Gadani K, et al. Comparison of charge transport studies of chemical solution and pulsed laser deposited manganite-based thin film devices. Appl Phys A, 2017, 123, 558 doi: 10.1007/s00339-017-1172-2[47] Liu Q, Miao J, Reeve R, et al. Ultra-large non-volatile modulation of magnetic moments in PbZr0.2Ti0.8O3/MgO/La0.7Sr0.3MnO3 heterostructure at room temperature via interfacial polarization mediation. Sci Rep, 2017, 7, 2627 doi: 10.1038/s41598-017-03019-x[48] Diaham S, Locatelli M L. Space-charge-limited currents in polyimide films. Appl Phys Lett, 2012, 101, 242905 doi: 10.1063/1.4771602[49] Ahmad Z, Sayyad M H. Extraction of electronic parameters of Schottky diode based on an organic semiconductor methyl-red. Phys E Low Dimension Syst Nanostruct, 2009, 41, 631 doi: 10.1016/j.physe.2008.08.068[50] Blom P W M, de Jong M J M, van Munster M G. Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys Rev B, 1997, 55, R656 doi: 10.1103/PhysRevB.55.R656[51] Caselli V M, Savenije T J. Quantifying charge carrier recombination losses in MAPbI3/C60 and MAPbI3/spiro-OMeTAD with and without bias illumination. J Phys Chem Lett, 2022, 13, 7523 doi: 10.1021/acs.jpclett.2c01728[52] Li Y, Li C, Yu H, et al. Highly conductive P-type MAPbI3 films and crystals via sodium doping. Front Chem, 2020, 8, 754 doi: 10.3389/fchem.2020.00754[53] Bartesaghi D, Slavney A H, Gélvez-Rueda M C, et al. Charge carrier dynamics in Cs2AgBiBr6 double perovskite. J Phys Chem C Nanomater Interfaces, 2018, 122, 4809 doi: 10.1021/acs.jpcc.8b00572[54] den Boer W. Determination of midgap density of states in a-si: H using space-charge-limited current measurements. J Phys Colloques, 1981, 42, C4 doi: 10.1051/jphyscol:1981494[55] Dang Y, Tong G, Song W, et al. Interface engineering strategies towards Cs2AgBiBr6 single-crystalline photodetectors with good Ohmic contact behaviours. J Mater Chem C, 2020, 8, 276 doi: 10.1039/C9TC04780H[56] Shen W, Jung U, Xian Z, et al. Enhanced device performance of Cs2AgBiBr6 double perovskite photodetector by SnO2/ZnO double electron transport layer. J Alloys Compd, 2022, 929, 167329 doi: 10.1016/j.jallcom.2022.167329[57] Han X, Liang J, Yang J H, et al. Lead-free double perovskite Cs2SnX6: Facile solution synthesis and excellent stability. Small, 2019, 15, 1901650 doi: 10.1002/smll.201901650[58] Hooijer R, Weis A, Biewald A, et al. Silver-bismuth based 2D double perovskites (4FPEA)4AgBiX8 (X = Cl, Br, I): Highly oriented thin films with large domain sizes and ultrafast charge-carrier localization. Adv Optical Mater, 2022, 10, 2200354 doi: 10.1002/adom.202200354[59] Li D, Liu X, Wu W, et al. Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection. Angew Chem Int Ed, 2021, 60, 8415 doi: 10.1002/anie.202013947[60] Huang J, Dong C, Mei Y, et al. The precursor-compensation strategy boosts the photoresponse performance of air-stable, self-powered Cs2SnI6 photodetectors. J Mater Chem C, 2021, 9, 14217 doi: 10.1039/d1tc03834f -
Supplements
24060032Supporting_Information.pdf -
Proportional views