J. Semicond. > 2024, Volume 45 > Issue 10 > 100402

NEWS AND VIEWS

A magic organic molecule assembled capping layer enables air-processed α-FAPbI3 perovskite solar cell with state-of-the-art performances

Yulong Wang1, 2, Xiuwen Xu1, , Shujuan Liu2, and Qiang Zhao1, 2,

+ Author Affiliations

 Corresponding author: Xiuwen Xu, xuxiuwen@njupt.edu.cn; Shujuan Liu, iamsjliu@njupt.edu.cn; Qiang Zhao, iamqzhao@njupt.edu.cn

DOI: 10.1088/1674-4926/24070017CSTR: 32376.14.1674-4926.24070017

PDF

Turn off MathJax



[1]
Ma C Q, Park N G. A realistic methodology for 30% efficient perovskite solar cells. Chem, 2020, 6(6), 1254 doi: 10.1016/j.chempr.2020.04.013
[2]
Ma C Q, Eickemeyer F T, Lee S H, et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science, 2023, 379(6628), 173 doi: 10.1126/science.adf3349
[3]
Zhu P D, Wang D, Zhang Y, et al. Aqueous synthesis of perovskite precursors for highly efficient perovskite solar cells. Science, 2024, 383(6682), 524 doi: 10.1126/science.adj7081
[4]
Gao C, Wang H, Wang P, et al. Defect passivation with potassium trifluoroborate for efficient spray-coated perovskite solar cells in air. J Semicond, 2022, 43(9), 092201 doi: 10.1088/1674-4926/43/9/092201
[5]
Wang Y X, Zhang X, Shi Z J, et al. Stabilizing α-phase FAPbI3 solar cells. J Semicond, 2022, 43(4), 040202 doi: 10.1088/1674-4926/43/4/040202
[6]
Liu X P, Luo D Y, Lu Z H, et al. Stabilization of photoactive phases for perovskite photovoltaics. Nat Rev Chem, 2023, 7(7), 462 doi: 10.1038/s41570-023-00492-z
[7]
Bu T L, Li J, Li H Y, et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372(6548), 1327 doi: 10.1126/science.abh1035
[8]
Bu T L, Ono L K, Li J, et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat Energy, 2022, 7(6), 528 doi: 10.1038/s41560-022-01039-0
[9]
Lv M X, Li N, Jin G, et al. Phase-stable FAPbI3-based single crystals with 600-μm electron diffusion length. Matter, 2023, 6(12), 4388 doi: 10.1016/j.matt.2023.10.021
[10]
Raval P, Kennard R M, Vasileiadou E S, et al. Understanding instability in formamidinium lead halide perovskites: Kinetics of transformative reactions at grain and subgrain boundaries. ACS Energy Lett, 2022, 7(4), 1534 doi: 10.1021/acsenergylett.2c00140
[11]
Shi P J, Ding Y, Ding B, et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature, 2023, 620(7973), 323 doi: 10.1038/s41586-023-06208-z
[12]
Yan L Y, Huang H, Cui P, et al. Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt. Nat Energy, 2023, 8(10), 1158 doi: 10.1038/s41560-023-01358-w
[13]
Xu X W, Ma C Q, Xie Y M, et al. Air-processed mixed-cation Cs0.15FA0.85PbI3 planar perovskite solar cells derived from a PbI2–CsI–FAI intermediate complex. J Mater Chem A, 2018, 6(17), 7731 doi: 10.1039/C8TA01049H
[14]
Zou Y, Yu W J, Guo H Q, et al. A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air. Science, 2024, 385(6705), 161 doi: 10.1126/science.adn9646
[15]
Wang X L, Ying Z Q, Zheng J M, et al. Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion. Nat Commun, 2023, 14(1), 2166 doi: 10.1038/s41467-023-37877-z
[16]
Chen P, Xiao Y, Li L, et al. Efficient inverted perovskite solar cells via improved sequential deposition. Adv Mater, 2023, 35, 2206345 doi: 10.1002/adma.202206345
[17]
Xu X W, Wang Y Q, Meng H X, et al. Perovskite-perovskite junctions for optoelectronics: Fundamentals, processing, and applications. Matter, 2022, 5(7), 2086 doi: 10.1016/j.matt.2022.05.030
Fig. 1.  (Color online) A capping layer for air-processed α-FAPbI3 PSCs[14]. (a) The chemical structure of TTM-7BCz. (b) Evolution of XRD signals of the pristine intermediate films upon thermal annealing. (c) XRD patterns of the perovskites derived from the pristine intermediate films with 60- and 300-s thermal annealing. (d) Evolution of XRD signals of the target intermediate films upon thermal annealing. (e) XRD patterns of the perovskites derived from the target intermediate films with 60- and 300-s thermal annealing. (f) Schematic of the perovskite crystallization process based on the target intermediate films. (g) and (h) In-situ ultraviolet−visible (UV−vis) absorbance monitoring perovskite crystallization based on the pristine and target intermediate films. (i) and (j) PCEs (i) and operational stability (j) of the PSCs.

[1]
Ma C Q, Park N G. A realistic methodology for 30% efficient perovskite solar cells. Chem, 2020, 6(6), 1254 doi: 10.1016/j.chempr.2020.04.013
[2]
Ma C Q, Eickemeyer F T, Lee S H, et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science, 2023, 379(6628), 173 doi: 10.1126/science.adf3349
[3]
Zhu P D, Wang D, Zhang Y, et al. Aqueous synthesis of perovskite precursors for highly efficient perovskite solar cells. Science, 2024, 383(6682), 524 doi: 10.1126/science.adj7081
[4]
Gao C, Wang H, Wang P, et al. Defect passivation with potassium trifluoroborate for efficient spray-coated perovskite solar cells in air. J Semicond, 2022, 43(9), 092201 doi: 10.1088/1674-4926/43/9/092201
[5]
Wang Y X, Zhang X, Shi Z J, et al. Stabilizing α-phase FAPbI3 solar cells. J Semicond, 2022, 43(4), 040202 doi: 10.1088/1674-4926/43/4/040202
[6]
Liu X P, Luo D Y, Lu Z H, et al. Stabilization of photoactive phases for perovskite photovoltaics. Nat Rev Chem, 2023, 7(7), 462 doi: 10.1038/s41570-023-00492-z
[7]
Bu T L, Li J, Li H Y, et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372(6548), 1327 doi: 10.1126/science.abh1035
[8]
Bu T L, Ono L K, Li J, et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat Energy, 2022, 7(6), 528 doi: 10.1038/s41560-022-01039-0
[9]
Lv M X, Li N, Jin G, et al. Phase-stable FAPbI3-based single crystals with 600-μm electron diffusion length. Matter, 2023, 6(12), 4388 doi: 10.1016/j.matt.2023.10.021
[10]
Raval P, Kennard R M, Vasileiadou E S, et al. Understanding instability in formamidinium lead halide perovskites: Kinetics of transformative reactions at grain and subgrain boundaries. ACS Energy Lett, 2022, 7(4), 1534 doi: 10.1021/acsenergylett.2c00140
[11]
Shi P J, Ding Y, Ding B, et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature, 2023, 620(7973), 323 doi: 10.1038/s41586-023-06208-z
[12]
Yan L Y, Huang H, Cui P, et al. Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt. Nat Energy, 2023, 8(10), 1158 doi: 10.1038/s41560-023-01358-w
[13]
Xu X W, Ma C Q, Xie Y M, et al. Air-processed mixed-cation Cs0.15FA0.85PbI3 planar perovskite solar cells derived from a PbI2–CsI–FAI intermediate complex. J Mater Chem A, 2018, 6(17), 7731 doi: 10.1039/C8TA01049H
[14]
Zou Y, Yu W J, Guo H Q, et al. A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air. Science, 2024, 385(6705), 161 doi: 10.1126/science.adn9646
[15]
Wang X L, Ying Z Q, Zheng J M, et al. Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion. Nat Commun, 2023, 14(1), 2166 doi: 10.1038/s41467-023-37877-z
[16]
Chen P, Xiao Y, Li L, et al. Efficient inverted perovskite solar cells via improved sequential deposition. Adv Mater, 2023, 35, 2206345 doi: 10.1002/adma.202206345
[17]
Xu X W, Wang Y Q, Meng H X, et al. Perovskite-perovskite junctions for optoelectronics: Fundamentals, processing, and applications. Matter, 2022, 5(7), 2086 doi: 10.1016/j.matt.2022.05.030
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 319 Times PDF downloads: 37 Times Cited by: 0 Times

    History

    Received: 18 July 2024 Revised: 14 August 2024 Online: Accepted Manuscript: 20 August 2024Uncorrected proof: 26 August 2024Published: 15 October 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yulong Wang, Xiuwen Xu, Shujuan Liu, Qiang Zhao. A magic organic molecule assembled capping layer enables air-processed α-FAPbI3 perovskite solar cell with state-of-the-art performances[J]. Journal of Semiconductors, 2024, 45(10): 100402. doi: 10.1088/1674-4926/24070017 ****Y L Wang, X W Xu, S J Liu, and Q Zhao, A magic organic molecule assembled capping layer enables air-processed α-FAPbI3 perovskite solar cell with state-of-the-art performances[J]. J. Semicond., 2024, 45(10), 100402 doi: 10.1088/1674-4926/24070017
      Citation:
      Yulong Wang, Xiuwen Xu, Shujuan Liu, Qiang Zhao. A magic organic molecule assembled capping layer enables air-processed α-FAPbI3 perovskite solar cell with state-of-the-art performances[J]. Journal of Semiconductors, 2024, 45(10): 100402. doi: 10.1088/1674-4926/24070017 ****
      Y L Wang, X W Xu, S J Liu, and Q Zhao, A magic organic molecule assembled capping layer enables air-processed α-FAPbI3 perovskite solar cell with state-of-the-art performances[J]. J. Semicond., 2024, 45(10), 100402 doi: 10.1088/1674-4926/24070017

      A magic organic molecule assembled capping layer enables air-processed α-FAPbI3 perovskite solar cell with state-of-the-art performances

      DOI: 10.1088/1674-4926/24070017
      CSTR: 32376.14.1674-4926.24070017
      More Information
      • Yulong Wang is a PhD student under supervision of Prof. Shujuan Liu and Prof. Xiuwen Xu at Nanjing University of Posts and Telecommunications. He is currently focusing on the regulation of perovskite crystallization in scalable printing processes, and their applications in large-area TFT-integrated photodetectors and X-ray detectors
      • Xiuwen Xu is a full professor at Nanjing University of Posts and Telecommunications. He obtained his Ph.D. degree (2019) from City University of Hong Kong. After that, he joined Prof. Shihe Yang’s group at Peking University and worked as a postdoc fellow. In recent years, he mainly focused on the design of advanced perovakite optoelectronics (e.g., X-ray detectors, solar cells, etc.)
      • Shujuan Liu received her Ph.D. degree from Fudan University in 2006. She then joined the Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts and Telecommunications. Since 2013, she has been a full professor. Her research focuses on organic optoelectronic materials and devices
      • Qiang Zhao received his PhD degree in 2007 from Fudan University. He then became a postdoctoral fellow at Nagoya University of Japan. He joined Nanjing University of Posts and Telecommunications in 2008. He was promoted as a full professor in 2010. His research area is organic optoelectronics, including the design, synthesis, and excited-state tuning of organic semiconductors for applications in optoelectronic devices and biomedical fields
      • Corresponding author: xuxiuwen@njupt.edu.cniamsjliu@njupt.edu.cniamqzhao@njupt.edu.cn
      • Received Date: 2024-07-18
      • Revised Date: 2024-08-14
      • Available Online: 2024-08-20

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return