Citation: |
Ying Hu, Qianpeng Zhang, Junchao Han, Xinxin Lian, Hualiang Lv, Yu Pei, Siqing Shen, Yongli Liang, Hao Hu, Meng Chen, Xiaoliang Mo, Junhao Chu. Recent progress on stability and applications of flexible perovskite photodetectors[J]. Journal of Semiconductors, 2024, In Press. doi: 10.1088/1674-4926/24080019
****
Y Hu, Q P Zhang, J C Han, X X Lian, H L Lv, Y Pei, S Q Shen, Y L Liang, H Hu, M Chen, X L Mo, and J H Chu, Recent progress on stability and applications of flexible perovskite photodetectors[J]. J. Semicond., 2024, accepted doi: 10.1088/1674-4926/24080019
|
Recent progress on stability and applications of flexible perovskite photodetectors
DOI: 10.1088/1674-4926/24080019
More Information
-
Abstract
Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring, wearable healthcare, imaging sensing, and portable optical communications. Perovskites stand out as particularly promising materials for photodetectors, offering exceptional optoelectronic properties, tunable band gaps, low-temperature solution processing, and notable mechanical flexibility. In this review, we explore the latest progress in flexible perovskite photodetectors, emphasizing the strategies developed for photoactive materials and device structures to enhance optoelectronic performance and stability. Additionally, we discuss typical applications of these devices and offer insights into future directions and potential applications.-
Keywords:
- perovskite,
- flexible photodetector,
- stability,
- versatile applications
-
References
[1] Hong E L, Li Z Q, Zhang X Y, et al. Deterministic fabrication and quantum-well modulation of phase-pure 2D perovskite heterostructures for encrypted light communication. Adv Mater, 2024, 36, 2400365 doi: 10.1002/adma.202400365[2] Guo L Q, Sun H X, Min L L, et al. Two-terminal perovskite optoelectronic synapse for rapid trained neuromorphic computation with high accuracy. Adv Mater, 2024, 36, 2402253 doi: 10.1002/adma.202402253[3] Deng X L, Li Z Q, Cao F, et al. Woven fibrous photodetectors for scalable UV optical communication device. Adv Funct Mater, 2023, 33, 2213334 doi: 10.1002/adfm.202213334[4] Yang G J, Li J Y, Wu M G, et al. Recent advances in materials, structures, and applications of flexible photodetectors. Adv Electron Mater, 2023, 9, 2300340 doi: 10.1002/aelm.202300340[5] Zhao Z E, Tang W B, Zhang S H, et al. Flexible self-powered vertical photodetectors based on the [001]-oriented CsPbBr3 film. J Phys Chem C, 2023, 127, 4846 doi: 10.1021/acs.jpcc.2c08845[6] Xing S, Kublitski J, Hänisch C, et al. Photomultiplication-type organic photodetectors for near-infrared sensing with high and bias-independent specific detectivity. Adv Sci, 2022, 9, 2105113 doi: 10.1002/advs.202105113[7] Ghosh J, Giri P K. Recent advances in perovskite/2D materials based hybrid photodetectors. J Phys Mater, 2021, 4, 032008 doi: 10.1088/2515-7639/abf544[8] Wang H Y, Sun Y, Chen J, et al. A review of perovskite-based photodetectors and their applications. Nanomaterials, 2022, 12, 4390 doi: 10.3390/nano12244390[9] Lu H, Wu W Q, He Z P, et al. Recent progress in construction methods and applications of perovskite photodetector arrays. Nanoscale Horiz, 2023, 8, 1014 doi: 10.1039/D3NH00119A[10] Yan T T, Li Z Q, Cao F, et al. An all-organic self-powered photodetector with ultraflexible dual-polarity output for biosignal detection. Adv Mater, 2022, 34, 2201303 doi: 10.1002/adma.202201303[11] Gu L L, Poddar S, Lin Y J, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581, 278 doi: 10.1038/s41586-020-2285-x[12] Zhou Y, Sun Z B, Ding Y C, et al. An ultrawide field-of-view pinhole compound eye using hemispherical nanowire array for robot vision. Sci Robot, 2024, 9, eadi8666 doi: 10.1126/scirobotics.adi8666[13] Shi B R, Wang P Y, Feng J Y, et al. Split-ring structured all-inorganic perovskite photodetector arrays for masterly internet of things. Nanomicro Lett, 2022, 15, 3[14] Choi C, Leem J, Kim M, et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat Commun, 2020, 11, 5934 doi: 10.1038/s41467-020-19806-6[15] Liu F C, Liu K, Rafique S, et al. Highly efficient and stable self-powered mixed tin-lead perovskite photodetector used in remote wearable health monitoring technology. Adv Sci, 2023, 10, 2205879 doi: 10.1002/advs.202205879[16] Zhao Y J, Yin X, Gu Z K, et al. Interlayer polymerization of 2D chiral perovskite single-crystal films toward high-performance flexible circularly polarized light detection. Adv Funct Mater, 2023, 33, 2306199 doi: 10.1002/adfm.202306199[17] Kim H, Seong S, Gong X W. Heterostructure engineering of solution-processable semiconductors for wearable optoelectronics. ACS Appl Electron Mater, 2023, 5, 5278 doi: 10.1021/acsaelm.2c01791[18] Cheng Y, Guo X, Shi Y, et al. Recent advance of high-quality perovskite nanostructure and its application in flexible photodetectors. Nanotechnology, 2024, 35, 35, 2410.1088/1361[19] Fan L B, Pei Z F, Wang P, et al. Research progress on the stability of organic–inorganic halide perovskite photodetectors in a humid environment through the modification of perovskite layers. J Electron Mater, 2022, 51, 2801 doi: 10.1007/s11664-022-09548-0[20] Zhang Q P, Zhang D Q, Cao B, et al. Improving the operational lifetime of metal-halide perovskite light-emitting diodes with dimension control and ligand engineering. ACS Nano, 2024, 18, 8557 doi: 10.1021/acsnano.3c13136[21] Dong Q S, Zhu C, Chen M, et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat Commun, 2021, 12, 973 doi: 10.1038/s41467-021-21292-3[22] Zheng Z H, Li F M, Gong J, et al. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv Mater, 2022, 34, 2109879 doi: 10.1002/adma.202109879[23] Wang M, Gao W C, Cao F R, et al. Ethylamine iodide additive enables solid-to-solid transformed highly oriented perovskite for excellent photodetectors. Adv Mater, 2022, 34, 2108569 doi: 10.1002/adma.202108569[24] Zou Y, Yu W J, Guo H Q, et al. A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air. Science, 2024, 385, 161 doi: 10.1126/science.adn9646[25] Chen Z Y, Cheng Q R, Chen H Y, et al. Perovskite grain-boundary manipulation using room-temperature dynamic self-healing "ligaments" for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv Mater, 2023, 35, 2300513 doi: 10.1002/adma.202300513[26] Zhou Q W, Duan J L, Du J, et al. Tailored lattice "tape" to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V. Adv Sci, 2021, 8, 2101418 doi: 10.1002/advs.202101418[27] Jiang S J, Wei W J, Li S Q, et al. Perovskite/GaN-based light-modulated bipolar junction transistor for high comprehensive performance visible-blind ultraviolet photodetection. ACS Photonics, 2024, 11, 3026 doi: 10.1021/acsphotonics.4c00250[28] Mahapatra A, Anilkumar V, Chavan R D, et al. Understanding the origin of light intensity and temperature dependence of photodetection properties in a MAPbBr3 single-crystal-based photoconductor. ACS Photonics, 2023, 10, 1424 doi: 10.1021/acsphotonics.3c00033[29] Xian S Y, Hou S M, Zhang H F, et al. High quality quasi-two-dimensional organic–inorganic hybrid halide perovskite film for high performance photodetector. Appl Phys Lett, 2023, 122, 103503 doi: 10.1063/5.0139686[30] Dong K L, Zhou H, Shao W L, et al. Perovskite-like silver halide single-crystal microbelt enables ultrasensitive flexible x-ray detectors. ACS Nano, 2023, 17, 1495 doi: 10.1021/acsnano.2c10318[31] Zhang M D, Lu Q N, Wang C L, et al. Improving the performance of ultra-flexible perovskite photodetectors through cation engineering. J Phys D: Appl Phys, 2020, 53, 235107 doi: 10.1088/1361-6463/ab7a59[32] Chun D H, Kim S, Park J, et al. Nanopatterning on mixed halide perovskites for promoting photocurrent generation of flexible photodetector. Adv Funct Mater, 2022, 32, 2206995 doi: 10.1002/adfm.202206995[33] Tian Y, Li Y, Hu C Q, et al. Air-stable flexible photodetector based on MXene-Cs3Bi2I9 microplate Schottky junctions for weak-light detection. ACS Appl Mater Interfaces, 2023, 15, 13332 doi: 10.1021/acsami.2c22691[34] Zhou D H, Yu L Y, Zhu P, et al. Lateral structured phototransistor based on mesoscopic graphene/perovskite heterojunctions. Nanomaterials, 2021, 11, 641 doi: 10.3390/nano11030641[35] Yun K R, Jeon M G, Lee T J, et al. High performance hybrid-phototransistor based on ZnON/perovskite heterostructure through multi-functional passivation. Adv Funct Mater, 2024, 34, 2312240 doi: 10.1002/adfm.202312240[36] Haque F, Hasan M M, Bestelink E, et al. Composition-dependent high-performance phototransistors based on solution processed CH3NH3PbI3/ZnO heterostructures. Adv Optical Mater, 2023, 11, 2300367 doi: 10.1002/adom.202300367[37] Shi J, Wang Y R, Yao B, et al. High-performance flexible Near-Infrared-II phototransistor realized by combining the optimized charge-transfer-complex/organic heterojunction active layer and gold nanoparticle modification. IEEE Trans Electron Devices, 2024, 71, 3714 doi: 10.1109/TED.2024.3384347[38] Tao K W, Xiong C W, Lin J C, et al. Self-powered photodetector based on perovskite/NiO x heterostructure for sensitive visible light and X-ray detection. Adv Electron Mater, 2023, 9, 2201222 doi: 10.1002/aelm.202201222[39] Zhao X H, Tao Y, Dong J X, et al. Cs3Cu2I5/ZnO heterostructure for flexible visible-blind ultraviolet photodetection. ACS Appl Mater Interfaces, 2022, 14, 43490 doi: 10.1021/acsami.2c11202[40] Hu J N, Chen J, Ma T, et al. High performance ultraviolet photodetector based on CsPbCl3/ZTO heterostructure film enabled by effective separation of photocarriers. J Alloy Compd, 2023, 963, 171043 doi: 10.1016/j.jallcom.2023.171043[41] Qu W, Li W J, Feng X P, et al. Low-temperature crystallized and flexible 1D/3D perovskite heterostructure with robust flexibility and high EQE-bandwidth product. Adv Funct Mater, 2023, 33, 2213955 doi: 10.1002/adfm.202213955[42] Zhao X H, Fang Y C, Dong J X, et al. Synergistically enhanced wide spectrum photodetection of a heterogeneous trilayer CsPbI3/PbS/ZnO architecture. J Mater Chem C, 2022, 10, 15168 doi: 10.1039/D2TC03212K[43] Li S X, Xia H, Wang L, et al. Self-powered and flexible photodetector with high polarization sensitivity based on MAPbBr3–MAPbI3 microwire lateral heterojunction. Adv Funct Mater, 2022, 32, 2206999 doi: 10.1002/adfm.202206999[44] Pal S, Ghorai A, Mahato S, et al. Piezo-Phototronic effect-induced self-powered broadband photodetectors using environmentally stable α-CsPbI3 perovskite nanocrystals. Adv Optical Mater, 2023, 11, 2300233 doi: 10.1002/adom.202300233[45] Han G S, Li X F, Berbille A, et al. Enhanced piezoelectricity of MAPbI3 by the introduction of MXene and its utilization in boosting high-performance photodetectors. Adv Mater, 2024, 36, 2313288 doi: 10.1002/adma.202313288[46] Lai Z X, Meng Y, Zhu Q, et al. High-performance flexible self-powered photodetectors utilizing spontaneous electron and hole separation in quasi-2D halide perovskites. Small, 2021, 17, 2100442 doi: 10.1002/smll.202100442[47] Wang S L, Li M Y, Song C Y, et al. Phenethylammonium iodide modulated SnO2 electron selective layer for high performance, self-powered metal halide perovskite photodetector. Appl Surf Sci, 2023, 623, 156983 doi: 10.1016/j.apsusc.2023.156983[48] Kumar P, Shukla V K, Kim M, et al. A comprehensive review on dark current in perovskite photodetectors: Origin, drawbacks, and reducing strategies. Sens Actuat A Phys, 2024, 369, 115076 doi: 10.1016/j.sna.2024.115076[49] Xue D J, Hou Y, Liu S C, et al. Regulating strain in perovskite thin films through charge-transport layers. Nat Commun, 2020, 11, 1514 doi: 10.1038/s41467-020-15338-1[50] Meng X C, Xing Z, Hu X T, et al. Stretchable perovskite solar cells with recoverable performance. Angew Chem Int Ed, 2020, 59, 16602 doi: 10.1002/anie.202003813[51] Liang C, Gu H, Xia J M, et al. High-performance flexible perovskite photodetectors based on single-crystal-like two-dimensional Ruddlesden-Popper thin films. Carbon Energy, 2023, 5, e251 doi: 10.1002/cey2.251[52] Zhao J J, Deng Y H, Wei H T, et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci Adv, 2017, 3, eaao5616 doi: 10.1126/sciadv.aao5616[53] Li J Y, Ge C Y, Zhao Z F, et al. Mechanical properties of single crystal organic–inorganic hybrid perovskite MAPbX3 (MA = CH3NH3, X = Cl, Br, I). Coatings, 2023, 13, 854 doi: 10.3390/coatings13050854[54] Tu Q, Spanopoulos I, Vasileiadou E S, et al. Exploring the factors affecting the mechanical properties of 2D hybrid organic-inorganic perovskites. ACS Appl Mater Interfaces, 2020, 12, 20440 doi: 10.1021/acsami.0c02313[55] Yu J G, Wang M C, Lin S C. Probing the soft and nanoductile mechanical nature of single and polycrystalline organic–inorganic hybrid perovskites for flexible functional devices. ACS Nano, 2016, 10, 11044 doi: 10.1021/acsnano.6b05913[56] He M, Xu Z H, Zhao C, et al. Sn-based self-powered ultrafast perovskite photodetectors with highly crystalline order for flexible imaging applications. Adv Funct Mater, 2023, 33, 2300282 doi: 10.1002/adfm.202300282[57] Wei C C, Wang J H, Wang L J, et al. Highly efficient flexible photodetectors based on Pb-free CsBi3I10 perovskites. ACS Appl Mater Interfaces, 2024, 16, 28845 doi: 10.1021/acsami.4c03662[58] Dao L G H, Chiang C H, Shirsat S M, et al. Highly stable, substrate-free, and flexible broadband halide perovskite paper photodetectors. Nanoscale, 2023, 15, 6581 doi: 10.1039/D2NR07008A[59] Nam J S, Choi J M, Lee J W, et al. Decoding polymeric additive-driven self-healing processes in perovskite solar cells from chemical and physical bonding perspectives. Adv Energy Mater, 2024, 14, 2304062 doi: 10.1002/aenm.202304062[60] Nie W Y, Blancon J C, Neukirch A J, et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat Commun, 2016, 7, 11574 doi: 10.1038/ncomms11574[61] Wang H, Zhang X, Ma Y L, et al. Giant humidity effect of 2D perovskite on paper substrate: Optoelectronic performance and mechanical flexibility. Adv Optical Mater, 2023, 11, 2203016 doi: 10.1002/adom.202203016[62] Wang M, Sun H X, Cao F R, et al. Moisture-triggered self-healing flexible perovskite photodetectors with excellent mechanical stability. Adv Mater, 2021, 33, 2100625 doi: 10.1002/adma.202100625[63] Sakhatskyi K, John R A, Guerrero A, et al. Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Lett, 2022, 7, 3401 doi: 10.1021/acsenergylett.2c01663[64] Cui Q Y, Bu N, Liu X M, et al. Efficient eco-friendly flexible X-ray detectors based on molecular perovskite. Nano Lett, 2022, 22, 5973 doi: 10.1021/acs.nanolett.2c02071[65] Zhou H, Wang R, Zhang X H, et al. High-performance, flexible perovskite photodetector based on CsPbBr3 nanonet. IEEE Trans Electron Devices, 2023, 70, 6435 doi: 10.1109/TED.2023.3327039[66] Li X Y, Shao C R, Zhao Y P, et al. Pyramid-shaped perovskite single-crystal growth and application for high-performance photodetector. Adv Optical Mater, 2024, 12, 2470077 doi: 10.1002/adom.202470077[67] Chen Y, Zhang Z Y, Wang G P. Water erosion highly recoverable and flexible photodetectors based on electrospun, waterproof perovskite–polymer fiber membranes. ACS Appl Polym Mater, 2023, 5, 6124 doi: 10.1021/acsapm.3c00800[68] Zhang D Q, Zhu Y D, Jiao R, et al. Metal seeding growth of three-dimensional perovskite nanowire forests for high-performance stretchable photodetectors. Nano Energy, 2023, 111, 108386 doi: 10.1016/j.nanoen.2023.108386[69] Jing H, Peng R W, Ma R M, et al. Flexible ultrathin single-crystalline perovskite photodetector. Nano Lett, 2020, 20, 7144 doi: 10.1021/acs.nanolett.0c02468[70] An Y, Li S X, Feng J C, et al. Highly responsive, polarization-sensitive, flexible, and stable photodetectors based on highly aligned CsCu2I3 nanowires. Adv Optical Mater, 2024, 12, 2301336 doi: 10.1002/adom.202301336[71] Meng Y Y, Liu C, Cao R K, et al. Pre-buried ETL with bottom-up strategy toward flexible perovskite solar cells with efficiency over 23%. Adv Funct Mater, 2023, 33, 2214788 doi: 10.1002/adfm.202214788[72] Chen L, Liu Z P, Qiu L L, et al. Multifunctional regulation of SnO2 nanocrystals by snail mucus for preparation of rigid or flexible perovskite solar cells in air. ACS Nano, 2023, 17, 23794 doi: 10.1021/acsnano.3c07784[73] Zhang M D, Lu Q N, Wang C L, et al. High-performance and stability bifacial flexible self-powered perovskite photodetector by surface plasmon resonance and hydrophobic treatments. Org Electron, 2021, 99, 106330 doi: 10.1016/j.orgel.2021.106330[74] Lee Y H, Lee S H, Won Y, et al. Boosting the performance of flexible perovskite photodetectors using hierarchical plasmonic nanostructures. Small Struct, 2024, 5, 2300546 doi: 10.1002/sstr.202300546[75] Hanqi B H, Jiang M M, Lin C X, et al. Flexible CsPbBr3 microwire photodetector with a performance enhanced by covering it with an Ag nanolayer. CrystEngComm, 2022, 24, 7620 doi: 10.1039/D2CE01040B[76] Qu M L, Tian Y X, Cheng Y B, et al. Whole-device mass-producible perovskite photodetector based on laser-induced graphene electrodes. Adv Optical Mater, 2022, 10, 2201741 doi: 10.1002/adom.202201741[77] Ma S, Bai Y, Wang H, et al. 1000 h operational lifetime perovskite solar cells by ambient melting encapsulation. Adv Energy Mater, 2020, 10, 1902472 doi: 10.1002/aenm.201902472[78] Xing R F, Li Z Q, Zhao W X, et al. Waterproof and flexible perovskite photodetector enabled by P-type organic molecular rubrene with high moisture and mechanical stability. Adv Mater, 2024, 36, 2310248 doi: 10.1002/adma.202310248[79] Shi T Y, Chen X, He R, et al. Flexible all-inorganic perovskite photodetector with a combined soft-hard layer produced by ligand cross-linking. Adv Sci, 2023, 10, 2302005 doi: 10.1002/advs.202302005[80] Tang Y J, Jin P, Wang Y, et al. Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging. Nat Commun, 2023, 14, 4961 doi: 10.1038/s41467-023-40711-1[81] Wang T, Zheng D M, Vegso K, et al. High-resolution and stable ruddlesden–popper quasi-2D perovskite flexible photodetectors arrays for potential applications as optical image sensor. Adv Funct Mater, 2023, 33, 2304659 doi: 10.1002/adfm.202304659[82] Mastria R, Riisnaes K J, Bacon A, et al. Real time and highly sensitive sub-wavelength 2D hybrid perovskite photodetectors. Adv Funct Mater, 2024, 34, 2401903[83] Wang T, Zheng D M, Vegso K, et al. Flexible array of high performance and stable formamidinium-based low-n 2D halide perovskite photodetectors for optical imaging. Nano Energy, 2023, 116, 108827 doi: 10.1016/j.nanoen.2023.108827[84] Zhao Y, Jiao S J, Yang S, et al. Achieving low cost and high performance flexible CsPbIBr2 perovskite photodetectors arrays with imaging system via dual interfacial optimization and structural design. Adv Optical Mater, 2024, 12, 2400019 doi: 10.1002/adom.202400019[85] Fu Y, Yuan M, Zhao Y J, et al. Gradient bandgap-tunable perovskite microwire arrays toward flexible color-cognitive devices. Adv Funct Mater, 2023, 33, 2214094 doi: 10.1002/adfm.202214094[86] Ji Z, Liu Y J, Zhao C X, et al. Perovskite wide-angle field-of-view camera. Adv Mater, 2022, 34, 2206957 doi: 10.1002/adma.202206957[87] Yan Y X, Li Z X, Li L L, et al. Stereopsis-inspired 3D visual imaging system based on 2D ruddlesden–popper perovskite. Small, 2023, 19, 2300831 doi: 10.1002/smll.202300831[88] Zhou Y, Qiu X, Wan Z A, et al. Halide-exchanged perovskite photodetectors for wearable visible-blind ultraviolet monitoring. Nano Energy, 2022, 100, 107516 doi: 10.1016/j.nanoen.2022.107516[89] Chen J, Sun R F, Zheng J C, et al. Photochromic perovskite nanocrystals for ultraviolet dosimetry. Small, 2024, 20, 2311993 doi: 10.1002/smll.202311993[90] Lu Q C, Zhang Y F, Yang G L, et al. Large-scale, uniform-patterned CsCuI3 films for flexible solar-blind photodetectors array with ultraweak light sensing. Small, 2023, 19, 2300364 doi: 10.1002/smll.202300364[91] Wu W T, Li L L, Li Z X, et al. Extensible integrated system for real-time monitoring of cardiovascular physiological signals and limb health. Adv Mater, 2023, 35, 2304596 doi: 10.1002/adma.202304596[92] Liu T H, Wang J F, Liu Y S, et al. Cyano-coordinated tin halide perovskites for wearable health monitoring and weak light imaging. Adv Mater, 2024, 36, 2400090 doi: 10.1002/adma.202400090[93] Li W H, Jia J Y, Sun X C, et al. A light/pressure bifunctional electronic skin based on a bilayer structure of PEDOT: PSS-coated cellulose paper/CsPbBr3 QDs film. Polymers, 2023, 15, 2136 doi: 10.3390/polym15092136[94] Hu Z J, Hu Y, Su L, et al. Light-adaptive mimicking retina with in situ image memorization via resistive switching photomemristor arrays. Laser Photonics Rev, 2024, 2301364[95] Wang C, Li G Y, Dai Z P, et al. Patterned chiral perovskite film for self-driven stokes photodetectors. Adv Funct Mater, 2024, 34, 2316265 doi: 10.1002/adfm.202316265[96] Bin Kim D, Han J, Jung Y S, et al. Origin of the anisotropic-strain-driven photoresponse enhancement in inorganic halide-based self-powered flexible photodetectors. Mater Horiz, 2022, 9, 1207 doi: 10.1039/D1MH02055B[97] Wang T, Zheng D M, Zhang J K, et al. High-performance and stable plasmonic-functionalized formamidinium-based quasi-2D perovskite photodetector for potential application in optical communication. Adv Funct Mater, 2022, 32, 2208694 doi: 10.1002/adfm.202208694[98] Zhang X L, Li Z Q, Hong E L, et al. Modulating quantum well width of ferroelectric ruddlesden–popper perovskites for flexible light communication device. Adv Funct Mater, 2024, 34, 2312293 doi: 10.1002/adfm.202312293[99] Huang R Q, Wu K T, Li W J, et al. Sunflower-inspired light-tracking system and spatial encryption imaging based on linear flexible perovskite photodetector arrays. Adv Optical Mater, 2023, 11, 2301177 doi: 10.1002/adom.202301177[100] Liu X M, Ren S X, Li Z H, et al. Flexible transparent high-efficiency photoelectric perovskite resistive switching memory. Adv Funct Mater, 2022, 32, 2270216 doi: 10.1002/adfm.202270216 -
Proportional views