Citation: |
Xin Shi, Weiguo Wang, Jun Wang, Jian Li, Huamin Chen. Semiconductor-based direct current triboelectric nanogenerators and its application[J]. Journal of Semiconductors, 2024, 45(12): 121701. doi: 10.1088/1674-4926/24080021
****
X Shi, W G Wang, J Wang, J Li, and H M Chen, Semiconductor-based direct current triboelectric nanogenerators and its application[J]. J. Semicond., 2024, 45(12), 121701 doi: 10.1088/1674-4926/24080021
|
Semiconductor-based direct current triboelectric nanogenerators and its application
DOI: 10.1088/1674-4926/24080021
More Information
-
Abstract
Triboelectric nanogenerator (TENG) utilizing tribovoltaic effect can directly produce direct current with high energy conversion efficiency, which expands their application in semiconductor devices and self-powered systems. This work comprehensively summarizes the recent developments in semiconductor-based direct current TENGs (SDC-TENGs), which hold significant promise for DC energy harvesting technologies and semiconductor systems. First, the tribovoltaic effect is elucidated, and SDC-TENGs are categorized into six types based on different triboelectric structures: metal−semiconductor (M−S), metal−insulator−semiconductor (M−I−S), semiconductor−semiconductor (S−S), semiconductor−insulator−semiconductor (S−I−S), liquid−semiconductor (L−S), and metal/semiconductor−liquid−semiconductor (M/S−L−S) contact devices. Subsequent sections detail the operational mechanisms, strengths, and limitations of each category. Additionally, this paper outlines the enhancement mechanisms of SDC-TENGs providing guidance and recommendations for performance improvement. The conclusion highlights potential application scenarios for various types of SDC-TENGs, outlining the prospective benefits and challenges. SDC-TENG technology is poised to drive revolutionary developments in semiconductor devices and self-powered systems. -
References
[1] Napolitano R, Reinhart W, Gevaudan J P. Smart cities built with smart materials. Science, 2021, 371, 1200 doi: 10.1126/science.abg4254[2] Zhang Z, Wu N, Gong L, et al. An ultrahigh power density and ultralow wear GaN-based tribovoltaic nanogenerator for sliding ball bearing as self-powered wireless sensor node. Adv Mater, 2024, 36, 2310098 doi: 10.1002/adma.202310098[3] Zhou X Y, Li G C, Wu D, et al. Recent advances of cellular stimulation with triboelectric nanogenerators. Exploration, 2023, 3, 20220090 doi: 10.1002/EXP.20220090[4] Wang J, Li S M, Yi F, et al. Sustainably powering wearable electronics solely by biomechanical energy. Nat Commun, 2016, 7, 12744 doi: 10.1038/ncomms12744[5] Xi Y, Tan P C, Li Z, et al. Self−powered wearable IoT sensors as human-machine interfaces. Soft Sci, 2023, 3, 26[6] Zhang Y Z, Gao X Y, Wu Y H, et al. Self−powered technology based on nanogenerators for biomedical applications. Exploration, 2021, 1, 90 doi: 10.1002/EXP.20210152[7] Sriphan S, Charoonsuk T, Maluangnont T, et al. High−performance hybridized composited-based piezoelectric and triboelectric nanogenerators based on BaTiO3/PDMS composite film modified with Ti0.8O2 nanosheets and silver nanopowders cofillers. ACS Appl Energy Mater, 2019, 2, 3840 doi: 10.1021/acsaem.9b00513[8] Jiang T, Pang H, An J, et al. Robust swing−structured triboelectric nanogenerator for efficient blue energy harvesting. Adv Energy Mater, 2020, 10, 2000064 doi: 10.1002/aenm.202000064[9] He W C, Liu W L, Chen J, et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat Commun, 2020, 11, 4277 doi: 10.1038/s41467-020-18086-4[10] Li Q Y, Hu Y W, Yang Q X, et al. A robust constant–voltage DC triboelectric nanogenerator using the ternary dielectric triboelectrification effect. Adv Energy Mater, 2023, 13, 2202921 doi: 10.1002/aenm.202202921[11] Wang J L, Li Y K, Xie Z J, et al. Cylindrical direct–current triboelectric nanogenerator with constant output current. Adv Energy Mater, 2020, 10, 1904227 doi: 10.1002/aenm.201904227[12] Sun D J, Song W Z, Li C L, et al. High−voltage direct current triboelectric nanogenerator based on charge pump and air ionization for electrospinning. Nano Energy, 2022, 101, 107599 doi: 10.1016/j.nanoen.2022.107599[13] Yang P Y, Zhou L L, Gao Y K, et al. Achieving high–performance triboelectric nanogenerator by DC pump strategy. Adv Mater Technol, 2023, 8, 2201957 doi: 10.1002/admt.202201957[14] Yu X T, Zheng H N, Lu Y H, et al. Wind driven semiconductor electricity generator with high direct current output based on a dynamic schottky junction. RSC Adv, 2021, 11, 19106 doi: 10.1039/D1RA02308J[15] Bernardo C P C V, Lameirinhas R A M, de Melo Cunha J P, et al. A revision of the semiconductor theory from history to applications. Discov Appl Sci, 2024, 6, 316 doi: 10.1007/s42452-024-06001-1[16] Yang R Z, Xu R, Dou W J, et al. Semiconductor−based dynamic heterojunctions as an emerging strategy for high direct−current mechanical energy harvesting. Nano Energy, 2021, 83, 105849 doi: 10.1016/j.nanoen.2021.105849[17] Wang Z L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss, 2014, 176, 447 doi: 10.1039/C4FD00159A[18] Chen Y K, Zhang Z, Wang Z Z, et al. Friction-dominated carrier excitation and transport mechanism for GaN-based direct-current triboelectric nanogenerators. ACS Appl Mater, 2022, 14, 24020 doi: 10.1021/acsami.2c03853[19] Zhang Z, Wang Z Z, Chen Y K, et al. Semiconductor contact−electrification−dominated tribovoltaic effect for ultrahigh power generation. Adv Mater, 2022, 34, 2200146 doi: 10.1002/adma.202200146[20] Wang Z L, Wang A C. On the origin of contact−electrification. Mater Today, 2019, 30, 34 doi: 10.1016/j.mattod.2019.05.016[21] Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator. Nano Energy, 2012, 1, 328 doi: 10.1016/j.nanoen.2012.01.004[22] Xu C, Yu J R, Huo Z W, et al. Pursuing the tribovoltaic effect for direct-current triboelectric nanogenerators. Energy Environ Sci, 2023, 16, 983 doi: 10.1039/D2EE04019K[23] Xu R, Zhang Q, Wang J Y, et al. Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor. Nano Energy, 2019, 66, 104185 doi: 10.1016/j.nanoen.2019.104185[24] Liu J, Cheikh M I, Bao R M, et al. Tribo-tunneling DC generator with carbon aerogel/silicon multi-nanocontacts. Adv Electron Mater, 2019, 5, 1900464 doi: 10.1002/aelm.201900464[25] Lu Y H, Feng S R, Shen R J, et al. Tunable dynamic black phosphorus/insulator/si heterojunction direct-current generator based on the hot electron transport. Research, 2019, 2019, 5832382[26] Liu J, Liu F F, Bao R M, et al. Scaled-up direct-current generation in MoS2 multilayer-based moving heterojunctions. ACS Appl Mater, 2019, 11, 35404 doi: 10.1021/acsami.9b09851[27] Xu C, Wang A C, Zou H Y, et al. Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv Mater, 2018, 30, 1803968 doi: 10.1002/adma.201803968[28] Xu C, Zi Y L, Wang A C, et al. On the electron-transfer mechanism in the contact-electrification effect. Adv Mater, 2018, 30, 1706790 doi: 10.1002/adma.201706790[29] Ma C Q, Kim B, Kim S W, et al. Dynamic halide perovskite heterojunction generates direct current. Energy Environ Sci, 2021, 14, 374 doi: 10.1039/D0EE03487H[30] Lee Y S, Jeon S, Kim D, et al. High performance direct current-generating triboelectric nanogenerators based on tribovoltaic p-n junction with ChCl-passivated CsFAMA perovskite. Nano Energy, 2023, 106, 108066 doi: 10.1016/j.nanoen.2022.108066[31] Wang Z Z, Zhang Z, Chen Y K, et al. Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect. Energy Environ Sci, 2022, 15, 2366 doi: 10.1039/D2EE00180B[32] Zhang Z, Jiang D D, Zhao J Q, et al. Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv Energy Mater, 2020, 10, 1903713 doi: 10.1002/aenm.201903713[33] You Z Y, Wang X, Lu F Q, et al. An organic semiconductor/metal Schottky heterojunction based direct current triboelectric nanogenerator windmill for wind energy harvesting. Nano Energy, 2023, 109, 108302 doi: 10.1016/j.nanoen.2023.108302[34] Dong S C, Bu T Z, Wang Z Z, et al. Freestanding–mode tribovoltaic nanogenerator for harvesting sliding and rotational mechanical energy. Adv Energy Mater, 2023, 13, 2300079 doi: 10.1002/aenm.202300079[35] Yuan H, Xiao Z X, Wan J X, et al. A rolling-mode Al/CsPbBr3 schottky junction direct-current triboelectric nanogenerator for harvesting mechanical and solar energy. Adv Energy Mater, 2022, 12, 2200550 doi: 10.1002/aenm.202200550[36] Luo Q Q, Xiao K, Li M, et al. Metal−semiconductor direct-current triboelectric nanogenerator based on depletion mode u-GaN/AlGaN/AlN/GaN HEMT. Appl Phys Lett, 2023, 123, 063902 doi: 10.1063/5.0158240[37] Liu J, Miao M M, Jiang K R, et al. Sustained electron tunneling at unbiased metal−insulator−semiconductor triboelectric contacts. Nano Energy, 2018, 48, 320 doi: 10.1016/j.nanoen.2018.03.068[38] Alexe M, Hesse D. Tip-enhanced photovoltaic effects in bismuth ferrite. Nat Commun, 2011, 2, 256 doi: 10.1038/ncomms1261[39] Zhu G, Lin ZH, Jing Q, et al. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett, 2013, 13, 847 doi: 10.1021/nl4001053[40] Reid O G, Munechika K, Ginger D S. Space charge limited current measurements on conjugated polymer films using conductive atomic force microscopy. Nano Lett, 2008, 8, 1602 doi: 10.1021/nl080155l[41] Liu J, Jiang K R, Nguyen L, et al. Interfacial friction-induced electronic excitation mechanism for tribo-tunneling current generation. Mater Horiz, 2019, 6, 1020 doi: 10.1039/C8MH01259H[42] Li X Q, Lin S S, Lin X, et al. Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector. Opt Express, 2016, 24, 134 doi: 10.1364/OE.24.000134[43] Wang X M, Qi L Q, Yang H H, et al. Stretchable synaptic transistors based on the field effect for flexible neuromorphic electronics. Soft Sci, 2023, 15[44] Cai X, Xiao Y, Zhang B W, et al. Surface control and electrical tuning of MXene electrode for flexible self–powered human–machine interaction. Adv Funct Mater, 2023, 33, 2304456 doi: 10.1002/adfm.202304456[45] Lin S S, Lu Y H, Feng S R, et al. A high current density direct-current generator based on a moving van der waals schottky diode. Adv Mater, 2019, 31, 1804398 doi: 10.1002/adma.201804398[46] Zheng M L, Lin S Q, Xu L, et al. Scanning probing of the tribovoltaic effect at the sliding interface of two semiconductors. Adv Mater, 2020, 32, 2000928 doi: 10.1002/adma.202000928[47] Zhou L L, Liu D, Zhao Z H, et al. Simultaneously enhancing power density and durability of sliding–mode triboelectric nanogenerator via interface liquid lubrication. Adv Energy Mater, 2020, 10, 2002920 doi: 10.1002/aenm.202002920[48] Lin S Q, Chen X Y, Wang Z L. Contact electrification at the liquid-solid interface. Chem Rev, 2022, 122, 5209 doi: 10.1021/acs.chemrev.1c00176[49] Chen Y, Xie B, Long J Y, et al. Interfacial laser-induced graphene enabling high-performance liquid−solid triboelectric nanogenerator. Adv Mater, 2021, 33, 2104290 doi: 10.1002/adma.202104290[50] Ghosh S, Sood A, Ramaswamy S, et al. Flow-induced voltage and current generation in carbon nanotubes. Phys Rev B, 2004, 70, 205423 doi: 10.1103/PhysRevB.70.205423[51] Král P, Shapiro M. Nanotube electron erag in flowing liquids. Phys Rev Lett, 2001, 86, 131 doi: 10.1103/PhysRevLett.86.131[52] Yin J, Li X M, Yu J, et al. Generating electricity by moving a droplet of ionic liquid along graphene. Nat Nanotechnol, 2014, 9, 378 doi: 10.1038/nnano.2014.56[53] Xue G B, Xu Y, Ding T P, et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat Nanotechnol, 2017, 12, 317 doi: 10.1038/nnano.2016.300[54] Lu Y H, Yan Y F, Yu X T, et al. Polarized water driven dynamic pn junction-based direct-current generator. Research, 2021, 2021, 7505638[55] Xiang L M, Zhang P, Liu C R, et al. Conductance and configuration of molecular gold-water-gold junctions under electric fields. Matter, 2020, 3, 166 doi: 10.1016/j.matt.2020.03.023[56] Wei K Q, Sun D J, Liu M N, et al. Direct current nanogenerator based on tribovoltaic effect at WS2 semiconductor interface. ACS Appl Nano Mater, 2024, 7, 1748[57] Song Y D, Wang N, Wang Y H, et al. Direct current triboelectric nanogenerators. Adv Energy Mater, 2020, 10, 2002756 doi: 10.1002/aenm.202002756[58] Wang Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 2013, 7, 9533 doi: 10.1021/nn404614z[59] Chen J, Yang J, Li Z L, et al. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano, 2015, 9, 3324 doi: 10.1021/acsnano.5b00534[60] Park J Y, Salmeron M. Fundamental aspects of energy dissipation in friction. Chem Rev, 2014, 114, 677 doi: 10.1021/cr200431y[61] Lu Y H, Gao Q Y, Yu X T, et al. Interfacial built-in electric field-driven direct current generator based on dynamic silicon homojunction. Research, 2020, 5714754[62] Benner M, Yang R Z, Lin L Q, et al. Mechanism of in-plane and out-of-plane tribovoltaic direct-current transport with a metal/oxide/metal dynamic heterojunction. ACS Appl Mater, 2022, 14, 2968 doi: 10.1021/acsami.1c22438[63] Chen Y R, Zhang H, Xu C H, et al. Characteristic of solid-ferrofluid triboelectric nanogenerator for ultra-low-frequency vibration energy harvesting. Nano Energy, 2023, 111, 108395 doi: 10.1016/j.nanoen.2023.108395[64] Wang Z Z, Gong L K, Dong S C, et al. A humidity-enhanced silicon-based semiconductor tribovoltaic direct-current nanogenerator. J Mater Chem A, 2022, 10, 25230 doi: 10.1039/D2TA07637C[65] Lin S Q, Chen X Y, Wang Z L. The tribovoltaic effect and electron transfer at a liquid−semiconductor interface. Nano Energy, 2020, 76, 105070 doi: 10.1016/j.nanoen.2020.105070[66] Liu J, Goswami A, Jiang K R, et al. Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers. Nat Nanotech, 2018, 13, 112 doi: 10.1038/s41565-017-0019-5[67] Zhang Z, Gong L K, Luan R F, et al. Tribovoltaic effect: Origin, interface, characteristic, mechanism & application. Adv Sci, 2024, 11, 2305460 doi: 10.1002/advs.202305460[68] Dai L C, Liu J, Han C, et al. Influence of electronic transmission on the electrical transport properties in metal–semiconductor contacts. Phys Status Solidi A, 2015, 212, 2791 doi: 10.1002/pssa.201532222[69] Imada M, Fujimori A, Tokura Y. Metal-insulator transitions. Rev Mod Phys, 1998, 70, 1039 doi: 10.1103/RevModPhys.70.1039[70] Sohn A, Kim H, Kim D W, et al. Evolution of local work function in epitaxial VO2 thin films spanning the metal-insulator transition. Appl Phys Lett, 2012, 101, 191605 doi: 10.1063/1.4766292[71] Tselev A, Luk’yanchuk I A, Ivanov I N, et al. Symmetry relationship and strain-induced transitions between insulating M1 and M2 and metallic R phases of vanadium dioxide. Nano Lett, 2010, 10, 4409 doi: 10.1021/nl1020443[72] Wentzcovitch R M, Schulz W W, Allen P B. VO2: Peierls or mott-hubbard? a view from band theory. Phys Rev Lett, 1994, 72, 3389 doi: 10.1103/PhysRevLett.72.3389[73] Jördens R, Strohmaier N, Günter K, et al. A Mott insulator of Fermionic atoms in an optical lattice. Nature, 2008, 455, 204 doi: 10.1038/nature07244[74] Zohar A, Kulbak M, Levine I, et al. What limits the open-circuit voltage of bromide perovskite-based solar cells? ACS Energy Lett, 2019, 4, 1 doi: 10.1021/acsenergylett.8b01920[75] Liao Z M, Liu K J, Zhang J M, et al. Effect of surface states on electron transport in individual ZnO nanowires. Phys Lett A, 2007, 367, 207 doi: 10.1016/j.physleta.2007.03.006[76] Liu L T, Kong L G, Li Q Y, et al. Transferred van der waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat Electron, 2021, 4, 342 doi: 10.1038/s41928-021-00566-0[77] Yang R Z, He Z H, Lin S Q, et al. Tunable tribovoltaic effect via metal-insulator transition. Nano Lett, 2022, 22, 9084 doi: 10.1021/acs.nanolett.2c03481[78] O’Callahan B T, Jones A C, Hyung Park J, et al. Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2. Nat Commun, 2015, 6, 6849 doi: 10.1038/ncomms7849[79] Lysenko S, Rua A J, Vikhnin V, et al. Light-induced ultrafast phase transitions in VO2 thin film. Appl Surf Sci, 2006, 252, 5512 doi: 10.1016/j.apsusc.2005.12.137[80] Lysenko S, Rúa A, Vikhnin V, et al. Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation. Phys Rev B, 2007, 76, 035104 doi: 10.1103/PhysRevB.76.035104[81] Dong K, Tang W. Nanogenerators and micro/nano energy harvesting. Sci Sin-Tech, 2023, 53, 953 doi: 10.1360/SST-2023-0034[82] Chen J, Zhu G, Yang W Q, et al. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv Mater, 2013, 25, 6094 doi: 10.1002/adma.201302397[83] Zhu G, Su Y J, Bai P, et al. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano, 2014, 8, 6031 doi: 10.1021/nn5012732[84] Zheng L, Lin Z H, Cheng G, et al. Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy, 2014, 9, 291 doi: 10.1016/j.nanoen.2014.07.024[85] Shang W Y, Gu G Q, Zhang W H, et al. Rotational pulsed triboelectric nanogenerators integrated with synchronously triggered mechanical switches for high efficiency self-powered systems. Nano Energy, 2021, 82, 105725 doi: 10.1016/j.nanoen.2020.105725[86] Liu D, Li C Y, Chen P F, et al. Sustainable long-term and wide-area environment monitoring network based on distributed self-powered wireless sensing nodes. Adv Energy Mater, 2023, 13, 2202691 doi: 10.1002/aenm.202202691[87] Zou Y J, Libanori A, Xu J, et al. Triboelectric nanogenerator enabled smart shoes for wearable electricity generation. Research, 2020, 7158953[88] Niu S M, Wang X F, Yi F, et al. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat Commun, 2015, 6, 8975 doi: 10.1038/ncomms9975[89] Zhang L, Zhang B B, Chen J, et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv Mater, 2016, 28, 1650 doi: 10.1002/adma.201504462[90] Stanford M G, Li J T, Chyan Y, et al. Laser-induced graphene triboelectric nanogenerators. ACS Nano, 2019, 13, 7166 doi: 10.1021/acsnano.9b02596[91] Pu X, Song W X, Liu M M, et al. Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells. Adv Energy Mater, 2016, 6, 1601048 doi: 10.1002/aenm.201601048[92] Dong C Q, Leber A, Das Gupta T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun, 2020, 11, 3537 doi: 10.1038/s41467-020-17345-8[93] Ye C, Yang S, Ren J, et al. Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception. ACS Nano, 2022, 16, 4415 doi: 10.1021/acsnano.1c10680[94] Sheng F F, Zhang B, Zhang Y H, et al. Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring. ACS Nano, 2022, 16, 10958 doi: 10.1021/acsnano.2c03365[95] Zhao X J, Kuang S Y, Wang Z L, et al. Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wwave energy. ACS Nano, 2018, 12, 4280 doi: 10.1021/acsnano.7b08716[96] Liu Y Q, Sun N, Liu J W, et al. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano, 2018, 12, 2893 doi: 10.1021/acsnano.8b00416[97] Liu D, Yin X, Guo H Y, et al. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci Adv, 2019, 5, eaav6437 doi: 10.1126/sciadv.aav6437[98] Li S X, Liu D, Zhao Z H, et al. A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators. ACS Nano, 2020, 14, 2475 doi: 10.1021/acsnano.9b10142 -
Proportional views