Citation: |
Qiaoling Tian, Kuo Xun, Zhuangzhuang Li, Xiaoning Zhao, Ya Lin, Ye Tao, Zhongqiang Wang, Daniele Ielmini, Haiyang Xu, Yichun Liu. Optoelectronic memristor based on a-C:Te film for muti-mode reservoir computing[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24100008
****
Q L Tian, K Xun, Z Z Li, X N Zhao, Y Lin, Y Tao, Z Q Wang, D Ielmini, H Y Xu, and Y C Liu, Optoelectronic memristor based on a-C:Te film for muti-mode reservoir computing[J]. J. Semicond., 2025, 46(2), 022407 doi: 10.1088/1674-4926/24100008
|
Optoelectronic memristor based on a-C:Te film for muti-mode reservoir computing
DOI: 10.1088/1674-4926/24100008
CSTR: 32376.14.1674-4926.24100008
More Information-
Abstract
Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications. In this work, an optoelectronic memristor with Au/a-C:Te/Pt structure is developed. Synaptic functions, i.e., excitatory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations. More importantly, the device exhibited distinguishable response currents by adjusting 4-bit input electrical/optical signals. A multi-mode reservoir computing (RC) system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7% is achieved. The optoelectronic memristor provides potential for developing multi-mode RC system. -
References
[1] Sun Z H, Feng Y, Guo P, et al. Flash-based in-memory computing for stochastic computing in image edge detection. J Semicond, 2023, 44, 054101 doi: 10.1088/1674-4926/44/5/054101[2] Shastri B J, Tait A N, Ferreira de Lima T, et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics, 2021, 15, 102 doi: 10.1038/s41566-020-00754-y[3] Hao Y X, Zhang Y, Wu Z H, et al. Uniform, fast, and reliable CMOS compatible resistive switching memory. J Semicond, 2022, 43, 054102 doi: 10.1088/1674-4926/43/5/054102[4] Yan M, Huang C, Bienstman P, et al. Emerging opportunities and challenges for the future of reservoir computing. Nat Commun, 2024, 15, 2056 doi: 10.1038/s41467-024-45187-1[5] Xiang S Y, Han Y N, Song Z W, et al. A review: Photonics devices, architectures, and algorithms for optical neural computing. J Semicond, 2021, 42, 023105 doi: 10.1088/1674-4926/42/2/023105[6] Zuo W B, Zhu Q H, Fu Y Y, et al. Volatile threshold switching memristor: An emerging enabler in the AIoT era. J Semicond, 2023, 44, 053102 doi: 10.1088/1674-4926/44/5/053102[7] Xin K Y, Wang X G, Grove-Rasmussen K, et al. Twist-angle two-dimensional superlattices and their application in (opto)electronics. J Semicond, 2022, 43, 011001 doi: 10.1088/1674-4926/43/1/011001[8] Deng Y F, Li Y X, Wang P F, et al. Observation of resistive switching in a graphite/hexagonal boron nitride/graphite heterostructure memristor. J Semicond, 2022, 43, 052003 doi: 10.1088/1674-4926/43/5/052003[9] Zhang S Q, Song B, Jia S J, et al. Multilayer doped-GeSe OTS selector for improved endurance and threshold voltage stability. J Semicond, 2022, 43, 104101 doi: 10.1088/1674-4926/43/10/104101[10] Gao Z M, Lyu S X, Lyu H B. Frequency dependence on polarization switching measurement in ferroelectric capacitors. J Semicond, 2022, 43, 014102 doi: 10.1088/1674-4926/43/1/014102[11] Li Y J, Tang J S, Gao B, et al. Oscillation neuron based on a low-variability threshold switching device for high-performance neuromorphic computing. J Semicond, 2021, 42, 064101 doi: 10.1088/1674-4926/42/6/064101[12] Sun Y M, Song C, Yin S Q, et al. Design of a controllable redox-diffusive threshold switching memristor. Adv Electron Mater, 2020, 6, 2000695 doi: 10.1002/aelm.202000695[13] Teja Nibhanupudi S S, Roy A, Veksler D, et al. Ultra-fast switching memristors based on two-dimensional materials. Nat Commun, 2024, 15, 2334 doi: 10.1038/s41467-024-46372-y[14] Cheng Z G, Ríos C, Pernice W H P, et al. On-chip photonic synapse. Sci Adv, 2017, 3, e1700160 doi: 10.1126/sciadv.1700160[15] Xu M J, Xu T F, Yu A Q, et al. Optoelectronic synapses based on photo-induced doping in MoS2/h-BN field-effect transistors. Adv Optical Mater, 2021, 9, 2100937 doi: 10.1002/adom.202100937[16] Li R L, Lin Y H, Li Y, et al. Amorphous gallium oxide homojunction-based optoelectronic synapse for multi-functional signal processing. J Semicond, 2023, 44, 074101 doi: 10.1088/1674-4926/44/7/074101[17] Fang Y Q, Meng J L, Li Q X, et al. Two-terminal photoelectric dual modulation synaptic devices for face recognition. IEEE Electron Device Lett, 2023, 44, 241 doi: 10.1109/LED.2022.3228944[18] Lin Y H, Wang W X, Li R L, et al. Multifunctional optoelectronic memristor based on CeO2/MoS2 heterojunction for advanced artificial synapses and bionic visual system with nociceptive sensing. Nano Energy, 2024, 121, 109267 doi: 10.1016/j.nanoen.2024.109267[19] Song J R, Meng J L, Wang T Y, et al. InGaZnO-based photoelectric synaptic devices for neuromorphic computing. J Semicond, 2024, 45, 092402 doi: 10.1088/1674-4926/24040038[20] Liu K Q, Zhang T, Dang B J, et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat Electron, 2022, 5, 761 doi: 10.1038/s41928-022-00847-2[21] Ai L, Pei Y F, Song Z Q, et al. Ligand-triggered self-assembly of flexible carbon dot nanoribbons for optoelectronic memristor devices and neuromorphic computing. Adv Sci, 2023, 10, 2207688 doi: 10.1002/advs.202207688[22] Xu J Q, Wang X F, Zhao X N, et al. Light-controlled stateful reconfigurable logic in a carbon dot-based optoelectronic memristor. Appl Phys Lett, 2024, 124, 073507 doi: 10.1063/5.0181090[23] Cao G, Cheng C T, Zhang H J, et al. The application of halide perovskites in memristors. J Semicond, 2020, 41, 051205 doi: 10.1088/1674-4926/41/5/051205[24] Lu B J, Du J G, Lu J G, et al. Ultralow operating voltage Nb2O5-based multilevel resistive memory with direct observation of Cu conductive filament. ACS Materials Lett, 2023, 5, 1350 doi: 10.1021/acsmaterialslett.2c01218[25] Lu B J, Hu D N, Yang R Q, et al. Self-repairable, high-uniform conductive-bridge random access memory based on amorphous NbSe2. SmartMat, 2024, 5, e1240 doi: 10.1002/smm2.1240[26] Lu B J, Hu D N, Wu M, et al. Low-operation voltage conductive-bridge random access memory based on amorphous NbS2. Smart Mol, 2023, 1, e20230008 doi: 10.1002/smo.20230008[27] Zhuge F, Dai W, He C L, et al. Nonvolatile resistive switching memory based on amorphous carbon. Appl Phys Lett, 2010, 96, 163505 doi: 10.1063/1.3406121[28] Chai Y, Wu Y, Takei K, et al. Nanoscale bipolar and complementary resistive switching memory based on amorphous carbon. IEEE Trans Electron Devices, 2011, 58, 3933 doi: 10.1109/TED.2011.2164615[29] Amani M, Tan C L, Zhang G, et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano, 2018, 12, 7253 doi: 10.1021/acsnano.8b03424[30] Shen Q C, Luo Z, Ma S, et al. Bioinspired infrared sensing materials and systems. Adv Mater, 2018, 30, 1707632 doi: 10.1002/adma.201707632[31] Zha J J, Shi S H, Chaturvedi A, et al. Electronic/optoelectronic memory device enabled by tellurium-based 2D van der waals heterostructure for in-sensor reservoir computing at the optical communication band. Adv Mater, 2023, 35, 2211598 doi: 10.1002/adma.202211598[32] Wu W Z, Qiu G, Wang Y X, et al. Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem Soc Rev, 2018, 47, 7203 doi: 10.1039/C8CS00598B[33] Shen J B, Jia S J, Shi N N, et al. Elemental electrical switch enabling phase segregation-free operation. Science, 2021, 374, 1390 doi: 10.1126/science.abi6332[34] Carotenuto G, Palomba M, De Nicola S, et al. Structural and photoconductivity properties of tellurium/PMMA films. Nanoscale Res Lett, 2015, 10, 1007 doi: 10.1186/s11671-015-1007-z[35] Ye B R, Gong C, Huang M L, et al. Improved performance of a CoTe//AC asymmetric supercapacitor using a redox additive aqueous electrolyte. RSC Adv, 2018, 8, 7997 doi: 10.1039/C7RA12919J[36] Ayiania M, Smith M, Hensley A J R, et al. Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles. Carbon, 2020, 162, 528 doi: 10.1016/j.carbon.2020.02.065[37] Zeng T, Yang Z, Liang J B, et al. Flexible and transparent memristive synapse based on polyvinylpyrrolidone/N-doped carbon quantum dot nanocomposites for neuromorphic computing. Nanoscale Adv, 2021, 3, 2623 doi: 10.1039/D1NA00152C[38] Wang W H, Zhou G D, Wang Y C, et al. Multiphotoconductance levels of the organic semiconductor of polyimide-based memristor induced by interface charges. J Phys Chem Lett, 2022, 13, 9941 doi: 10.1021/acs.jpclett.2c02651[39] Wang X M, Yang F, Liu Q, et al. Neuromorphic circuits based on memristors: Endowing robots with a human-like brain. J Semicond, 2024, 45, 061301 doi: 10.1088/1674-4926/23120037[40] Wen W, Guo Y L, Liu Y Q. Multifunctional neurosynaptic devices for human perception systems. J Semicond, 2022, 43, 051201 doi: 10.1088/1674-4926/43/5/051201[41] Wang J J, Pan X Q, Zhao Z B, et al. An infrared near-sensor reservoir computing system based on large-dynamic-space memristor with tens of thousands of states for dynamic gesture perception. Adv Sci, 2024, 11, 2307359 doi: 10.1002/advs.202307359[42] Sun L F, Wang R Z, Jiang J B, et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci Adv, 2021, 7, eabg1455 doi: 10.1126/sciadv.abg1455 -
Proportional views