Citation: |
Zhicheng Guan, Hengyu Zhang, Guang Yang. Advances in perovskite lasers[J]. Journal of Semiconductors, 2025, 46(4): 041401. doi: 10.1088/1674-4926/24100029
****
Z C Guan, H Y Zhang, and G Yang, Advances in perovskite lasers[J]. J. Semicond., 2025, 46(4), 041401 doi: 10.1088/1674-4926/24100029
|
Advances in perovskite lasers
DOI: 10.1088/1674-4926/24100029
CSTR: 32376.14.1674-4926.24100029
More Information-
Abstract
Perovskite materials have emerged as promising candidates for various optoelectronic applications owing to their remarkable optoelectronic properties and easy solution processing. Metal halide perovskites, as direct-bandgap semiconductors, show an excellent class of optical gain media, which makes them applicable to the development of low-threshold or even thresholdless lasers. This mini review explores recent advances in perovskite-based laser technology, which have led to chiral single-mode microlasers, low-threshold, external-cavity-free lasing devices at room temperature, and other innovative device architectures. Including self-assembled CsPbBr3 microwires that enable edge lasing. Realized continuous-wave (CW) pumped lasing by perovskite material pushes the research of electrically driven perovskite lasers. The capacity to regulate charge transport in halide perovskites further enhances their applicability in optoelectronic systems. The ongoing integration of perovskite materials with advanced photonic structures holds excellent potential for future innovations in laser technology and photovoltaics. We also highlight the transformative potential of perovskite materials in advancing the next generation of efficient and integrated optoelectronic devices.-
Keywords:
- perovskites,
- lasers,
- optoelectronics
-
References
[1] Park N G. Perovskite solar cells: An emerging photovoltaic technology. Mater Today, 2015, 18, 65 doi: 10.1016/j.mattod.2014.07.007[2] Li X, Aftab S, Hussain S, et al. Dimensional diversity (0D, 1D, 2D, and 3D) in perovskite solar cells: Exploring the potential of mixed-dimensional integrations. J Mater Chem A, 2024, 12, 4421 doi: 10.1039/D3TA06953B[3] Xu X Y, Liu S F, Kuai Y, et al. Laser fabrication of multi-dimensional perovskite patterns with intelligent anti-counterfeiting applications. Adv Sci, 2024, 11, 2309862 doi: 10.1002/advs.202309862[4] Grancini G, Nazeeruddin M K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat Rev Mater, 2019, 4, 4 doi: 10.1038/s41578-018-0065-0[5] Ren M, Cao S, Zhao J L, et al. Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes. Nanomicro Lett, 2021, 13, 163 doi: 10.1007/s40820-021-00685-5[6] Wang M R, Shi Z F, Fei C B, et al. Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat Energy, 2023, 8, 1229 doi: 10.1038/s41560-023-01362-0[7] Xu X Y, Zhou J, Shi Z R, et al. Microwave-assisted in situ synthesis of low-dimensional perovskites within metal-organic frameworks for optoelectronic applications. Appl Mater Today, 2024, 40, 102418 doi: 10.1016/j.apmt.2024.102418[8] Zhang L, Sun C J, He T W, et al. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci Appl, 2021, 10, 61 doi: 10.1038/s41377-021-00501-0[9] Duan D W, Ge C Y, Rahaman M Z, et al. Recent progress with one-dimensional metal halide perovskites: From rational synthesis to optoelectronic applications. NPG Asia Mater, 2023, 15, 8 doi: 10.1038/s41427-023-00465-0[10] Tyagi D, Laxmi V, Basu N, et al. Recent advances in two-dimensional perovskite materials for light-emitting diodes. Discov Nano, 2024, 19, 109 doi: 10.1186/s11671-024-04044-2[11] Zhou C K, Lin H R, He Q Q, et al. Low dimensional metal halide perovskites and hybrids. Mater Sci Eng R Rep, 2019, 137, 38 doi: 10.1016/j.mser.2018.12.001[12] Zhang L X, Mei L Y, Wang K Y, et al. Advances in the application of perovskite materials. Nano Micro Lett, 2023, 15, 177 doi: 10.1007/s40820-023-01140-3[13] Mahamood R M. Laser basics and laser material interactions. Laser metal deposition process of metals, alloys, and composite materials. Springer, 2018, 11 doi: 10.1007/978-3-319-64985-6[14] Lei L, Dong Q, Gundogdu K, et al. Metal halide perovskites for laser applications. Adv Funct Mater, 2021, 31, 2010144 doi: 10.1002/adfm.202010144[15] Zhang Q, Shang Q Y, Su R, et al. Halide perovskite semiconductor lasers: Materials, cavity design, and low threshold. Nano Lett, 2021, 21, 1903 doi: 10.1021/acs.nanolett.0c03593[16] Ning C Z. Semiconductor nanolasers and the size-energy-efficiency challenge: A review. Adv Photonics, 2019, 1, 014002 doi: 10.1117/1.AP.1.1.014002[17] Eaton S W, Fu A, Wong A B, et al. Semiconductor nanowire lasers. Nat Rev Mater, 2016, 1, 16028 doi: 10.1038/natrevmats.2016.28[18] Hill M T, Gather M C. Advances in small lasers. Nat Photonics, 2014, 8, 908 doi: 10.1038/nphoton.2014.239[19] Ponce F A, Bour D P. Nitride-based semiconductors for blue and green light-emitting devices. Nature, 1997, 386, 351 doi: 10.1038/386351a0[20] Kuehne A J C, Gather M C. Organic lasers: Recent developments on materials, device geometries, and fabrication techniques. Chem Rev, 2016, 116, 12823 doi: 10.1021/acs.chemrev.6b00172[21] Deschler F, Price M, Pathak S, et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett, 2014, 5, 1421 doi: 10.1021/jz5005285[22] Xing G C, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13, 476 doi: 10.1038/nmat3911[23] Liu P, Gu C L, Liao Q. Electrically switchable amplified spontaneous emission from lead halide perovskite film. ACS Omega, 2021, 6, 34021 doi: 10.1021/acsomega.1c05364[24] Wei Q, Li X J, Liang C, et al. Recent progress in metal halide perovskite micro- and nanolasers. Adv Opt Mater, 2019, 7, 1900080 doi: 10.1002/adom.201900080[25] Huang C Y, Zou C, Mao C Y, et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics, 2017, 4, 2281 doi: 10.1021/acsphotonics.7b00520[26] Cha H, Bae S, Jung H, et al. Single-mode distributed feedback laser operation in solution-processed halide perovskite alloy system. Adv Opt Mater, 2017, 5, 1700545 doi: 10.1002/adom.201700545[27] Sun W Z, Liu Y L, Qu G Y, et al. Lead halide perovskite vortex microlasers. Nat Commun, 2020, 11, 4862 doi: 10.1038/s41467-020-18669-1[28] Wu Z Y, Chen J, Mi Y, et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers. Adv Opt Mater, 2018, 6, 1800674 doi: 10.1002/adom.201800674[29] Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 2017, 17, 3982 doi: 10.1021/acs.nanolett.7b01956[30] Huang C, Zhang C, Xiao S M, et al. Ultrafast control of vortex microlasers. Science, 2020, 367, 1018 doi: 10.1126/science.aba4597[31] Huang Z T, Yin C W, Hong Y H, et al. Hybrid plasmonic surface lattice resonance perovskite lasers on silver nanoparticle arrays. Adv Optical Mater, 2021, 9, 2100299 doi: 10.1002/adom.202100299[32] Lin H C, Lee Y C, Lin C C, et al. Integration of on-chip perovskite nanocrystal laser and long-range surface plasmon polariton waveguide with etching-free process. Nanoscale, 2022, 14, 10075 doi: 10.1039/D2NR01611G[33] Samuel I D W, Turnbull G A. Organic semiconductor lasers. Chem Rev, 2007, 107, 1272 doi: 10.1021/cr050152i[34] Gu H T, Xu H Y, Yang C, et al. Color-tunable lead halide perovskite single-mode chiral microlasers with exceptionally high glum. Nano Lett, 2024, 24, 13333 doi: 10.1021/acs.nanolett.4c03838[35] Zhang G, Haw J Y, Cai H, et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat Photonics, 2019, 13, 839 doi: 10.1038/s41566-019-0504-5[36] Liu Q, Wei Q, Ren H, et al. Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite. Nat Commun, 2023, 14, 7179 doi: 10.1038/s41467-023-43034-3[37] Zhang X D, Liu Y L, Han J C, et al. Chiral emission from resonant metasurfaces. Science, 2022, 377, 1215 doi: 10.1126/science.abq7870[38] Cao X H, Xing S Y, Lai R C, et al. Low-threshold, external-cavity-free flexible perovskite lasers. Adv Funct Mater, 2023, 33, 2211841 doi: 10.1002/adfm.202211841[39] Zhang C H, Dong H Y, Zhang C, et al. Photonic skins based on flexible organic microlaser arrays. Sci Adv, 2021, 7, eabh3530 doi: 10.1126/sciadv.abh3530[40] Karl M, Glackin J M E, Schubert M, et al. Flexible and ultra-lightweight polymer membrane lasers. Nat Commun, 2018, 9, 1525 doi: 10.1038/s41467-018-03874-w[41] Kędziora M, Opala A, Mastria R, et al. Predesigned perovskite crystal waveguides for room-temperature exciton-polariton condensation and edge lasing. Nat Mater, 2024, 23, 1515 doi: 10.1038/s41563-024-01980-3[42] Qin C J, Sandanayaka A S D, Zhao C Y, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585, 53 doi: 10.1038/s41586-020-2621-1[43] De Giorgi M L, Anni M. Amplified spontaneous emission and lasing in lead halide perovskites: State of the art and perspectives. Appl Sci, 2019, 9, 4591 doi: 10.3390/app9214591[44] Elkhouly K, Goldberg I, Zhang X, et al. Electrically assisted amplified spontaneous emission in perovskite light-emitting diodes. Nat Photonics, 2024, 18, 132 doi: 10.1038/s41566-023-01341-7[45] Xiong W T, Tang W D, Zhang G, et al. Controllable p- and n-type behaviours in emissive perovskite semiconductors. Nature, 2024, 633, 344 doi: 10.1038/s41586-024-07792-4 -
Proportional views