Citation: |
Baorui Fang, Ye Tian, Zongmin Ma. High carrier collection efficiency in graphene/GaAs heterojunction photodetectors[J]. Journal of Semiconductors, 2025, 46(4): 042701. doi: 10.1088/1674-4926/24110002
****
B R Fang, Y Tian, and Z M Ma, High carrier collection efficiency in graphene/GaAs heterojunction photodetectors[J]. J. Semicond., 2025, 46(4), 042701 doi: 10.1088/1674-4926/24110002
|
High carrier collection efficiency in graphene/GaAs heterojunction photodetectors
DOI: 10.1088/1674-4926/24110002
CSTR: 32376.14.1674-4926.24110002
More Information-
Abstract
In the rapidly evolving field of modern technology, near-infrared (NIR) photodetectors are extremely crucial for efficient and reliable optical communications. The graphene/GaAs Schottky junction photodetector leverages graphene’s exceptional carrier mobility and broadband absorption, coupled with GaAs’s strong absorption in the NIR spectrum, to achieve high responsivity and rapid response times. Here, we present a NIR photodetector employing a graphene/GaAs Schottky junction tailored for communication wavelengths. We fabricated high-performance graphene/GaAs Schottky junction devices with interdigitated electrodes of varying finger widths, systematically investigating their impact on device performance. The experimental results demonstrate that incorporating interdigitated electrodes significantly enhances the collection efficiency of photogenerated carriers in graphene/GaAs photodetectors. When illuminated by 808 nm NIR light at an intensity of 7.23 mW/cm2, the device achieves an impressive switch ratio of 10⁷, along with a high responsivity of 40.1 mA/W and a remarkable detectivity of 2.89 × 10¹³ Jones. Additionally, the device is characterized by rapid response times, with rise and fall times of 18.5 and 17.5 μs, respectively, at a 3 dB bandwidth. These findings underscore the significant potential of high-performance graphene/GaAs photodetectors for applications in NIR optoelectronic systems.-
Keywords:
- graphene,
- GaAs,
- Schottky junction,
- interdigitated electrode
-
References
[1] Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotech, 2013, 8, 497 doi: 10.1038/nnano.2013.100[2] Muench J, Ruocco A, Giambra M A, et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett, 2019, 19, 7632 doi: 10.1021/acs.nanolett.9b02238[3] Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector. Nano Lett, 2012, 12, 2773 doi: 10.1021/nl204512x[4] Larki F, Abdi Y, Kameli P, et al. An effort towards full graphene photodetectors. Photonic Sens, 2022, 12, 31 doi: 10.1007/s13320-020-0600-7[5] Kind H, Yan H, Messer B, et al. Nanowire ultraviolet photodetectors and optical switches. Adv Mater, 2002, 14, 158 doi: 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W[6] He T, Ma H, Wang Z, et al. On-chip optoelectronic logic gates operating in the telecom band. Nat Photonics, 2024, 18, 60 doi: 10.1038/s41566-023-01309-7[7] Lee C M, Engelbrecht C J, Soper T D, et al. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging. J Biophotonics, 2010, 3, 385 doi: 10.1002/jbio.200900087[8] Wang Z, Tan C H, Peng M, et al. Giant infrared bulk photovoltaic effect in tellurene for broad-spectrum neuromodulation. Light Sci Appl, 2024, 13, 277 doi: 10.1038/s41377-024-01640-w[9] Zhao T G, Guo J X, Li T, et al. Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem Soc Rev, 2023, 52, 1650 doi: 10.1039/D2CS00657J[10] Qiu H, Yu Z H, Zhao T G, et al. Two-dimensional materials for future information technology: Status and prospects. Sci China Inf Sci, 2024, 67, 160400 doi: 10.1007/s11432-024-4033-8[11] Su W H, Zhang S, Liu C, et al. Interlayer transition induced infrared response in ReS2/2D perovskite van der waals heterostructure photodetector. Nano Lett, 2022, 22, 10192 doi: 10.1021/acs.nanolett.2c04328[12] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nature Nanotech, 2011, 6, 147 doi: 10.1038/nnano.2010.279[13] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech, 2012, 7, 699 doi: 10.1038/nnano.2012.193[14] Chhowalla M, Jena D, Zhang H. Two-dimensional semiconductors for transistors. Nat Rev Mater, 2016, 1, 16052[15] Dou L T, Yang Y, You J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5, 5404 doi: 10.1038/ncomms6404[16] An X H, Liu F Z, Jung Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett, 2013, 13, 909 doi: 10.1021/nl303682j[17] Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on graphene–CMOS integration. Nat Photonics, 2017, 11, 366 doi: 10.1038/nphoton.2017.75[18] Ping J F, Fan Z X, Sindoro M, et al. Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv Funct Mater, 2017, 27, 1605817 doi: 10.1002/adfm.201605817[19] Li J, Chen C, Liu S L, et al. Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene. Chem Mater, 2018, 30, 2742 doi: 10.1021/acs.chemmater.8b00521[20] Wang Y, Jaiswal M, Lin M, et al. Electronic properties of nanodiamond decorated graphene. ACS Nano, 2012, 6, 1018 doi: 10.1021/nn204362p[21] Zhang B Y, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun, 2013, 4, 1811 doi: 10.1038/ncomms2830[22] Zhao T G, Chen Y, Xu T F, et al. Topological insulator Bi2Se3 heterojunction with a low dark current for midwave infrared photodetection. ACS Photonics, 2024, 11, 2450 doi: 10.1021/acsphotonics.4c00347[23] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5, 574 doi: 10.1038/nnano.2010.132[24] Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487, 82 doi: 10.1038/nature11253[25] Xia F N, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nature Photon, 2014, 8, 899 doi: 10.1038/nphoton.2014.271[26] Liu C S, Chen H W, Wang S Y, et al. Two-dimensional materials for next-generation computing technologies. Nat Nanotechnol, 2020, 15, 545 doi: 10.1038/s41565-020-0724-3[27] Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567, 323 doi: 10.1038/s41586-019-1013-x[28] Luo L B, Hu H, Wang X H, et al. A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J Mater Chem C, 2015, 3, 4723 doi: 10.1039/C5TC00449G[29] Qu J, Chen J. Ag NPs and MoS2 QDs double modified graphene/GaAs near-infrared photodetector. Semicond Sci Technol, 2023, 38, 055007 doi: 10.1088/1361-6641/acc3bc[30] Wu J H, Yang Z W, Qiu C Y, et al. Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles. Nanoscale, 2018, 10, 8023 doi: 10.1039/C8NR00594J[31] Cai Z L, He X Y, Wang K K, et al. Enhancing performance of GaN/Ga2O3 P-N junction uvc photodetectors via interdigitated structure. Small Methods, 2024, 8, e2301148 doi: 10.1002/smtd.202301148[32] Zeng L H, Lin S H, Li Z J, et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv Funct Mater, 2018, 28, 1705970 doi: 10.1002/adfm.201705970[33] Wang L, Jie J S, Shao Z B, et al. MoS2 /Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible–near infrared photodetectors. Adv Funct Mater, 2015, 25, 2910 doi: 10.1002/adfm.201500216[34] Wang F, Zhang T, Xie R Z, et al. How to characterize figures of merit of two-dimensional photodetectors. Nat Commun, 2023, 14, 2224 doi: 10.1038/s41467-023-37635-1[35] Wang H. High gain single GaAs nanowire photodetector. Appl Phys Lett, 2013, 103, 093101[36] Wu J H, Qiu C Y, Feng S R, et al. A synergetic enhancement of localized surface plasmon resonance and photo-induced effect for graphene/GaAs photodetector. Nanotechnology, 2020, 31, 105204 doi: 10.1088/1361-6528/ab5a08 -
Proportional views