Citation: |
Jiye Li, Mengran Liu, Zhendong Jiang, Yuqing Zhang, Hua Xu, Lei Wang, Congwei Liao, Shengdong Zhang, Lei Lu. Downscaling challenges in IGZO transistors: A study on threshold voltage roll-up and roll-off effects[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24120005
****
J Y Li, M R Liu, Z D Jiang, Y Q Zhang, H Xu, L Wang, C W Liao, S D Zhang, and L Lu, Downscaling challenges in IGZO transistors: A study on threshold voltage roll-up and roll-off effects[J]. J. Semicond., 2025, 46(8), 082301 doi: 10.1088/1674-4926/24120005
|
Downscaling challenges in IGZO transistors: A study on threshold voltage roll-up and roll-off effects
DOI: 10.1088/1674-4926/24120005
CSTR: 32376.14.1674-4926.24120005
More Information-
Abstract
Besides the common short-channel effect (SCE) of threshold voltage (Vth) roll-off during the channel length (L) downscaling of InGaZnO (IGZO) thin-film transistors (TFTs), an opposite Vth roll-up was reported in this work. Both roll-off and roll-up effects of Vth were comparatively investigated on IGZO transistors with varied gate insulator (GI), source/drain (S/D), and device architecture. For IGZO transistors with thinner GI, the SCE was attenuated due to the enhanced gate controllability over the variation of channel carrier concentration, while the Vth roll-up became more noteworthy. The latter was found to depend on the relative ratio of S/D series resistance (RSD) over channel resistance (RCH), as verified on transistors with different S/D. Thus, an ideal S/D engineering with small RSD but weak dopant diffusion is highly expected during the downscaling of L and GI in IGZO transistors. -
References
[1] Byeon G, Jang S C, Roh T, et al. Recent progress in the development of backplane thin film transistors for information displays. J Inf Disp, 2023, 24(3), 159 doi: 10.1080/15980316.2023.2219030[2] Troughton J, Atkinson D. Amorphous InGaZnO and metal oxide semiconductor devices: An overview and current status. J Mater Chem C, 2019, 7(40), 12388 doi: 10.1039/C9TC03933C[3] Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016), 488 doi: 10.1038/nature03090[4] Charnas A, Zhang Z C, Lin Z H, et al. Review-extremely thin amorphous indium oxide transistors. Adv Mater, 2024, 36(9), e2304044 doi: 10.1002/adma.202304044[5] Yuvaraja S, Khandelwal V, Tang X, et al. Wide bandgap semiconductor-based integrated circuits. Chip, 2023, 2(4), 100072 doi: 10.1016/j.chip.2023.100072[6] Wu J X, Mo F, Saraya T, et al. Monolithic integration of oxide semiconductor FET and ferroelectric capacitor enabled by Sn-doped InGaZnO for 3-D embedded RAM application. IEEE Trans Electron Devices, 2021, 68(12), 6617 doi: 10.1109/TED.2021.3111145[7] Kim Y S, Oh H J, Kim J, et al. Approaches for 3D integration using plasma-enhanced atomic-layer-deposited atomically-ordered InGaZnO transistors with ultra-high mobility. Small Methods, 2023, 7(10), e2300549 doi: 10.1002/smtd.202300549[8] Wang Z H, Zheng L K, Lin Z Y, et al. CMOS logic and capacitorless DRAM by stacked oxide semiconductor and poly-Si transistors for monolithic 3-D integration. IEEE Trans Electron Devices, 2024, 71(8), 4664 doi: 10.1109/TED.2024.3418768[9] Hu Q L, Gu C R, Zhu S W, et al. Capacitorless DRAM cells based on high-performance indium-tin-oxide transistors with record data retention and reduced write latency. IEEE Electron Device Lett, 2023, 44(1), 60 doi: 10.1109/LED.2022.3225263[10] Yan S Z, Cong Z R, Lu N D, et al. Recent progress in InGaZnO FETs for high-density 2T0C DRAM applications. Sci China Inf Sci, 2023, 66(10), 200404 doi: 10.1007/s11432-023-3802-8[11] Su Y B, Shi M C, Tang J S, et al. Monolithic 3-D integration of counteractive coupling IGZO/CNT hybrid 2T0C DRAM and analog RRAM-based computing-In-memory. IEEE Trans Electron Devices, 2024, 71(5), 3336 doi: 10.1109/TED.2024.3372937[12] Si M W, Lin Z H, Chen Z Z, et al. Scaled indium oxide transistors fabricated using atomic layer deposition. Nat Electron, 2022, 5(3), 164 doi: 10.1038/s41928-022-00718-w[13] Wang W H, Li K, Lan J, et al. CMOS backend-of-line compatible memory array and logic circuitries enabled by high performance atomic layer deposited ZnO thin-film transistor. Nat Commun, 2023, 14(1), 6079 doi: 10.1038/s41467-023-41868-5[14] Kang D H, Kang I, Ryu S H, et al. Self-aligned coplanar a-IGZO TFTs and application to high-speed circuits. IEEE Electron Device Lett, 2011, 32(10), 1385 doi: 10.1109/LED.2011.2161568[15] Li J Y, Zhang Y Q, Wang J L, et al. High-performance self-aligned top-gate amorphous InGaZnO TFTs with 4 nm-thick atomic-layer-deposited AlO x insulator. IEEE Electron Device Lett, 2022, 43(5), 729 doi: 10.1109/LED.2022.3160514[16] Chen H C, Chen J J, Zhou K J, et al. Hydrogen diffusion and threshold voltage shifts in top-gate amorphous InGaZnO thin-film transistors. IEEE Trans Electron Devices, 2020, 67(8), 3123 doi: 10.1109/TED.2020.2998101[17] Hong S Y, Kim H J, Kim D H, et al. Study on the lateral carrier diffusion and source-drain series resistance in self-aligned top-gate coplanar InGaZnO thin-film transistors. Sci Rep, 2019, 9(1), 6588 doi: 10.1038/s41598-019-43186-7[18] Kang D H, Han J U, Mativenga M, et al. Threshold voltage dependence on channel length in amorphous-indium-gallium-zinc-oxide thin-film transistors. Appl Phys Lett, 2013, 102(8), 083508 doi: 10.1063/1.4793996[19] Kim J, Kim D H, Cho S I, et al. Channel-shortening effect suppression of a high-mobility self-aligned oxide TFT using trench structure. IEEE Electron Device Lett, 2021, 42(12), 1798 doi: 10.1109/LED.2021.3125146[20] Lee J K, An S, Lee S Y. Self-aligned top-gate IGZO TFT with stepped structure for suppressing short channel effect. IEEE Electron Device Lett, 2023, 44(11), 1845 doi: 10.1109/LED.2023.3317403[21] Frank D J, Dennard R H, Nowak E, et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc IEEE, 2001, 89(3), 259 doi: 10.1109/5.915374[22] Bondyopadhyay P K. Moore’s law governs the silicon revolution. Proc IEEE, 1998, 86(1), 78 doi: 10.1109/5.658761[23] Hanafi H I, Noble W P, Bass R S, et al. A model for anomalous short-channel behavior in submicron MOSFETs. IEEE Electron Device Lett, 1993, 14(12), 575 doi: 10.1109/55.260794[24] Orlowski M, Mazure C, Lau F. Submicron short channel effects due to gate reoxidation induced lateral interstitial diffusion. 1987 International Electron Devices Meeting, 1987, 632 doi: 10.1109/IEDM.1987.191507[25] Nishida M, Onodera H. An anomalous increase of threshold voltages with shortening the channel lengths for deeply boron-implanted N-channel MOSFET’s. IEEE Trans Electron Devices, 1981, 28(9), 1101 doi: 10.1109/T-ED.1981.20494[26] Kim T, Choi C H, Hur J S, et al. Progress, challenges, and opportunities in oxide semiconductor devices: A key building block for applications ranging from display backplanes to 3D integrated semiconductor chips. Adv Mater, 2023, 35(43), e2204663 doi: 10.1002/adma.202204663[27] Peng H, Chang B Z, Fu H S, et al. Top-gate amorphous indium-gallium-zinc-OxideThin-film transistors with magnesium metallized source/drain regions. IEEE Trans Electron Devices, 2020, 67(4), 1619 doi: 10.1109/TED.2020.2975211[28] Zhang Y Q, Yang H, Peng H, et al. Self-aligned top-gate amorphous InGaZnO TFTs with plasma enhanced chemical vapor deposited sub-10 nm SiO2 gate dielectric for low-voltage applications. IEEE Electron Device Lett, 2019, 40(9), 1459 doi: 10.1109/LED.2019.2931358[29] Robertson J, Wallace R M. High-K materials and metal gates for CMOS applications. Mater Sci Eng R Rep, 2015, 88, 1 doi: 10.1016/j.mser.2014.11.001[30] Ide K, Nomura K, Hosono H, et al. Electronic defects in amorphous oxide semiconductors: A review. Phys Status Solidi A, 2019, 216(5), 1800372 doi: 10.1002/pssa.201800372[31] Ortiz-Conde A, Garcı́a Sánchez F J, Liou J J, et al. A review of recent MOSFET threshold voltage extraction methods. Microelectron Reliab, 2002, 42(4), 583 doi: 10.1016/S0026-2714(02)00027-6[32] Tang H W, Dekkers H, Rassoul N, et al. Study of contact resistance components in short-channel indium-gallium-zinc-oxide transistor. IEEE Trans Electron Devices, 2024, 71(1), 567 doi: 10.1109/TED.2023.3332057[33] Shi Y, Tsuji M, Cho H, et al. Approach to low contact resistance formation on buried interface in oxide thin-film transistors: Utilization of palladium-mediated hydrogen pathway. ACS Nano, 2024, 18(13), 9736 doi: 10.1021/acsnano.4c02101[34] Song A, Hong H M, Son K S, et al. Hydrogen behavior in top gate amorphous In–Ga–Zn–O device fabrication process during gate insulator deposition and gate insulator etching. IEEE Trans Electron Devices, 2021, 68(6), 2723 doi: 10.1109/TED.2021.3074120[35] Zhou Y, Wang M X, Wong M. Series resistance extraction in poly-Si TFTs with channel length and mobility variations. IEEE Electron Device Lett, 2011, 32(7), 901 doi: 10.1109/LED.2011.2142391[36] Kim S, Park J, Kim C, et al. Source/drain formation of self-aligned top-gate amorphous GaInZnO thin-film transistors by NH3 plasma treatment. IEEE Electron Device Lett, 2009, 30(4), 374 doi: 10.1109/LED.2009.2014181[37] Park J, Song I, Kim S, et al. Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors. Appl Phys Lett, 2008, 93(5), 053501 doi: 10.1063/1.2966145[38] Jeong H Y, Lee B Y, Lee Y J, et al. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer. Appl Phys Lett, 2014, 104(2), 022115 doi: 10.1063/1.4862320[39] Yang H, Zhou X L, Fu H S, et al. Metal reaction-induced bulk-doping effect in forming conductive source-drain regions of self-aligned top-gate amorphous InGaZnO thin-film transistors. ACS Appl Mater Interfaces, 2021, 13(9), 11442 doi: 10.1021/acsami.0c21123[40] Li J Y, Zhang Y Q, Fu H S, et al. self-aligned top-gate amorphous In-Ga-Zn-O thin-film transistors with hafnium-induced source/drain regions. Symp Digest Tech Papers, 2023, 54(1), 580 doi: 10.1002/sdtp.16624[41] Chen R S, Zhou W, Zhang M, et al. Self-aligned indium–gallium–zinc oxide thin-film transistor with phosphorus-doped source/drain regions. IEEE Electron Device Lett, 2012, 33(8), 1150 doi: 10.1109/LED.2012.2201444[42] Ye Z, Lu L, Wong M. Zinc-oxide thin-film transistor with self-aligned source/drain regions doped with implanted boron for enhanced thermal stability. IEEE Trans Electron Devices, 2012, 59(2), 393 doi: 10.1109/TED.2011.2175398[43] Han K Z, Samanta S, Xu S Q, et al. High field temperature-independent field-effect mobility of amorphous indium–gallium–zinc oxide thin-film transistors: Understanding the importance of equivalent-oxide-thickness downscaling. IEEE Trans Electron Devices, 2021, 68(1), 118 doi: 10.1109/TED.2020.3035737[44] Gu C R, Hu Q L, Li Q J, et al. 1/f noise of short-channel indium tin oxide transistors under stress. Appl Phys Lett, 2023, 122(25), 252104 doi: 10.1063/5.0147577[45] Zhang J, Charnas A, Lin Z H, et al. Fluorine-passivated In2O3 thin film transistors with improved electrical performance via low-temperature CF4/N2O plasma. Appl Phys Lett, 2022, 121(17), 172101 doi: 10.1063/5.0113015[46] Kim D G, Choi S H, Lee W B, et al. Highly robust atomic layer deposition-indium gallium zinc oxide thin-film transistors with hybrid gate insulator fabricated via two-step atomic layer process for high-density integrated all-oxide vertical complementary metal-oxide-semiconductor applications. Small Struct, 2023, 5(2), 2300375 doi: 10.1002/sstr.202300375 -
Proportional views