Citation: |
Yupeng Yuan, Yi Zhuo, Jianjun Tu, Qingjiang Xia, Yan Zhang, Wengao Lu, Xiangyang Li, Ding Ma. A Cryogenic 3.3-V supply, 1.6% 3σ-accuracy all-CMOS voltage reference with 58-dB PSR@10 kHz in 0.18-μm CMOS[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24120039
****
Y P Yuan, Y Zhuo, J J Tu, Q J Xia, Y Zhang, W G Lu, X Y Li, and D Ma, A Cryogenic 3.3-V supply, 1.6% 3σ-accuracy all-CMOS voltage reference with 58-dB PSR@10 kHz in 0.18-μm CMOS[J]. J. Semicond., 2025, 46(8), 082201 doi: 10.1088/1674-4926/24120039
|
A Cryogenic 3.3-V supply, 1.6% 3σ-accuracy all-CMOS voltage reference with 58-dB PSR@10 kHz in 0.18-μm CMOS
DOI: 10.1088/1674-4926/24120039
CSTR: 32376.14.1674-4926.24120039
More Information-
Abstract
This brief presents a cryogenic voltage reference circuit designed to operate effectively across a wide temperature range from 30 to 300 K. A key feature of the proposed design is utilizing a current subtraction technique for temperature compensation of the reference current, avoiding the deployment of bipolar transistors to reduce area and power consumption. Implemented with a 0.18-µm CMOS process, the circuit achieves a temperature coefficient (TC) of 67.5 ppm/K, which was not achieved in previous works. The design can also attain a power supply rejection (PSR) of 58 dB at 10 kHz. Meanwhile, the average reference voltage is 1.2 V within a 1.6% 3σ-accuracy spread. Additionally, the design is characterized by a minimal power dissipation of 1 µW at 30 K and a compact chip area of 0.0035 mm². -
References
[1] Liao X F, Zhang Y X, Zhang S H, et al. A 3.0 μ vrms, 2.4 ppm/°C BGR with feedback coefficient enhancement and bowl-shaped curvature compensation. IEEE Trans Circuits Syst I Regul Pap, 2024, 71(5), 2424 doi: 10.1109/TCSI.2024.3373788[2] Seok M, Kim G, Blaauw D, et al. A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V. IEEE J Solid State Circuits, 2012, 47(10), 2534 doi: 10.1109/JSSC.2012.2206683[3] Zhu Z M, Hu J, Wang Y T. A 0.45 V, nano-watt 0.033% line sensitivity MOSFET-only sub-threshold voltage reference with no amplifiers. IEEE Trans Circuits Syst I Regul Pap, 2016, 63(9), 1370 doi: 10.1109/TCSI.2016.2576643[4] Ji Y W, Lee J H, Kim B S, et al. A 192-pW voltage reference generating bandgap−Vth with process and temperature dependence compensation. IEEE J Solid State Circuits, 2019, 54(12), 3281 doi: 10.1109/JSSC.2019.2942356[5] Wang L D, Zhan C C. A 0.7-V 28-nW CMOS subthreshold voltage and current reference in one simple circuit. IEEE Trans Circuits Syst I Regul Pap, 2019, 66(9), 3457 doi: 10.1109/TCSI.2019.2927240[6] Song L, Homulle H, Charbon E, et al. Characterization of bipolar transistors for cryogenic temperature sensors in standard CMOS. 2016 IEEE SENSORS, 2016, 1 doi: 10.1109/ICSENS.2016.7808759[7] Deng C, Wu S, Liu C C, et al. A systematic review of voltage reference circuits: Spanning room temperature to cryogenic applications. IEEE Trans Circuits Syst I Regul Pap, 2024, 72(4), 1533 doi: 10.1109/TCSI.2024.3507783[8] Charbon E. Cryo-CMOS electronics for quantum computing: Bringing classical electronics closer to qubits in space and temperature. IEEE Solid State Circuits Mag, 2021, 13(2), 54 doi: 10.1109/MSSC.2021.3072808[9] Wang Z W, Tang Z D, Guo A, et al. Temperature-driven gate geometry effects in nanoscale cryogenic MOSFETs. IEEE Electron Device Lett, 2020, 41(5), 661 doi: 10.1109/LED.2020.2984280[10] van Staveren J, Padalia P M, Charbon E, et al. Cryo-CMOS voltage references for the ultrawide temperature range from 300 K down to 4.2 K. IEEE J Solid State Circuits, 2024, 59(9), 2884 doi: 10.1109/JSSC.2024.3378768[11] Yang Y Y, Das K, Moini A, et al. A cryo-CMOS voltage reference in 28-nm FDSOI. IEEE Solid State Circuits Lett, 2020, 3, 186 doi: 10.1109/LSSC.2020.3010234[12] Loose M, Beletic J, Garnett J, et al. High-performance focal plane arrays based on the HAWAII-2RG/4G and the SIDECAR ASIC. Proc SPIE, 2010, 6690, 124 doi: 10.1117/12.735625[13] Marqués-García J, Pérez-Bailón J, Celma S, et al. Characterization of 65-nm CMOS integrated resistors in the cryogenic regime. IEEE Trans Instrum Meas, 2024, 73, 2003303 doi: 10.1109/TIM.2024.3381286[14] Vittoz E A, Neyroud O. A low-voltage CMOS bandgap reference. IEEE J Solid State Circuits, 1979, 14(3), 573 doi: 10.1109/JSSC.1979.1051218[15] Jiang J Z, Shu W, Chang J S. A 5.6 ppm/°C temperature coefficient, 87-dB PSRR, sub-1-V voltage reference in 65-nm CMOS exploiting the zero-temperature-coefficient point. IEEE J Solid State Circuits, 2017, 52(3), 623 doi: 10.1109/JSSC.2016.2627544[16] Ueno K, Hirose T, Asai T, et al. A 300 nW, 15 ppm/℃, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs. IEEE J Solid State Circuits, 2009, 44(7), 2047 doi: 10.1109/JSSC.2009.2021922[17] Cao Y R, Zhuang H Y, Li Q. A 0.8-V supply, 1.58% 3σ-accuracy, 1.9-μW bandgap reference in 0.13-μm CMOS. IEEE Trans Circuits Syst II Express Briefs, 2024, 71(4), 1884 doi: 10.1109/TCSII.2023.3339236 -
Proportional views