Citation: |
Xinyu Jiang, Wei Deng, Junlong Gong, Haikun Jia, Baoyong Chi. A K/Ka-band series doherty CMOS power amplifier with distributed multi-step impedance inverting network[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25010002
****
X Y Jiang, W Deng, J L Gong, H K Jia, and B Y Chi, A K/Ka-band series doherty CMOS power amplifier with distributed multi-step impedance inverting network[J]. J. Semicond., 2025, 46(6), 062201 doi: 10.1088/1674-4926/25010002
|
A K/Ka-band series doherty CMOS power amplifier with distributed multi-step impedance inverting network
DOI: 10.1088/1674-4926/25010002
CSTR: 32376.14.1674-4926.25010002
More Information-
Abstract
A two-way K/Ka-band series-Doherty PA (SDPA) with a distributed impedance inverting network (IIN) for millimeter wave applications is presented in this article. The proposed distributed IIN contributes to achieve wideband linear and power back-off (PBO) efficiency enhancement. Implemented in 65 nm bulk CMOS technology, this work realizes a measured 3 dB bandwidth of 15.5 GHz with 21.2 dB peak small-signal gain at 34.2 GHz. Under 1-V power supply, it achieves OP1dB over 13.4 dBm and Psat over 16 dBm between 21 to 30 GHz. The measured maximum Psat, OP1dB, peak/OP1dB/6dBPBO PAE results are 17.5, 14.7 dBm, and 28.2%/23.2%/13.2%. Without digital pre-distortion (DPD) and equalization, EVMs are lower than −25.2 dB for 200 MHz 64-QAM signals. Besides, this work achieves −33.35, −23.52, and −20 dB EVMs for 100 MHz 256-QAM, 600 MHz 64-QAM and 2 GHz 16-QAM signals at 27 GHz without DPD and equalization. -
References
[1] Pashaeifar M, de Vreede L C N, Alavi M S. A millimeter-wave CMOS series-Doherty power amplifier with post-silicon inter-stage passive validation. IEEE J Solid State Circuits, 2022, 57(10), 2999 doi: 10.1109/JSSC.2022.3175685[2] Wang Y, Xu H T. Millimeter-wave PA design techniques in ISSCC 2024. J Semicond, 2024, 45(4), 040205 doi: 10.1088/1674-4926/45/4/040205[3] Li S S, Huang M Y, Jung D, et al. A MM-wave current-mode inverse outphasing transmitter front-end: A circuit duality of conventional voltage-mode outphasing. IEEE J Solid State Circuits, 2021, 56(6), 1732 doi: 10.1109/JSSC.2020.3038882[4] Rabet B, Asbeck P M. A 28 GHz single-input linear chireix (SILC) power amplifier in 130 nm SiGe technology. IEEE J Solid State Circuits, 2020, 55(6), 1482 doi: 10.1109/JSSC.2020.2967542[5] Anabtawi N, Ferzli R, Harmanani H M. A single switcher combined series parallel hybrid envelope tracking amplifier for wideband RF power amplifier applications. 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, 2366 doi: 10.1109/ISCAS.2016.7539060[6] Chowdhury D, Mundlapudi S R, Afsahi A. 2.2 A fully integrated reconfigurable wideband envelope-tracking SoC for high-bandwidth WLAN applications in a 28nm CMOS technology. 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, 34 doi: 10.1109/ISSCC.2017.7870247[7] Qunaj V, Reynaert P. A ka-band Doherty-like LMBA for high-speed wireless communication in 28-nm CMOS. IEEE J Solid State Circuits, 2021, 56(12), 3694 doi: 10.1109/JSSC.2021.3110168[8] Huang X R, Jia H K, Deng W, et al. A compact E-band load-modulation balanced power amplifier in 65-nm CMOS. IEEE J Solid State Circuits, 2024, 59(10), 3172 doi: 10.1109/JSSC.2024.3404610[9] Rostomyan N, Özen M, Asbeck P. 28 GHz Doherty power amplifier in CMOS SOI with 28% back-off PAE. IEEE Microw Wirel Compon Lett, 2018, 28(5), 446 doi: 10.1109/LMWC.2018.2813882[10] Park H C, Kim S, Lee J, et al. Single transformer-based compact Doherty power amplifiers for 5G RF phased-array ICs. IEEE J Solid State Circuits, 2022, 57(5), 1267 doi: 10.1109/JSSC.2022.3148044[11] Cripps S C. RF power amplifiers for wireless communications, 2nd ed. Norwood, MA: Artech House, 2006[12] Yi Y R, Zhao D X, Zhang J J, et al. A 24–30 GHz 8-element dual-polarized 5g Fr2 phased-array transceiveric with 20.8-dBm tx OP1dB and 4.1-dB rx NFin 65-nm cmos. J Semicond, 2024, 45(1), 012201 doi: 10.1088/1674-4926/45/1/012201[13] Jia H K, Prawoto C C, Chi B Y, et al. A full ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS. IEEE Trans Circuits Syst I Regul Pap, 2018, 65(9), 2657 doi: 10.1109/TCSI.2018.2799983[14] Wang R T, Li C G, Qiu K Q, et al. A ka-band broadband power amplifier with transformer-based lossy magnetically coupled resonator network: Analysis and design. IEEE Trans Microw Theory Tech, 2024, 72(12), 6857 doi: 10.1109/TMTT.2024.3411485[15] Gong J, Li W, Hu J T, et al. An 8–18 GHz power amplifier with novel gain fluctuation compensation technique in 65 nm CMOS. J Semicond, 2018, 39(12), 125008 doi: 10.1088/1674-4926/39/12/125008[16] Chan W L, Long J R. A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V supply. IEEE J Solid State Circuits, 2010, 45(3), 554 doi: 10.1109/JSSC.2009.2039274[17] Hu S, Wang F, Wang H. A 28-/37-/39-GHz linear Doherty power amplifier in silicon for 5G applications. IEEE J Solid State Circuits, 2019, 54(6), 1586 doi: 10.1109/JSSC.2019.2902307[18] Wang F, Wang H. A high-power broadband multi-primary DAT-based Doherty power amplifier for mm-wave 5G applications. IEEE J Solid State Circuits, 2021, 56(6), 1668 doi: 10.1109/JSSC.2021.3070800[19] Zhang X H, Li S S, Huang D Q, et al. A millimeter-wave three-way Doherty power amplifier for 5G NR OFDM. IEEE J Solid State Circuits, 2023, 58(5), 1256 doi: 10.1109/JSSC.2023.3238766[20] Kulkarni S, Zhao D X, Reynaert P. Design of an optimal layout polyphase filter for millimeter-wave quadrature LO generation. IEEE Trans Circuits Syst II Express Briefs, 2013, 60(4), 202 doi: 10.1109/TCSII.2013.2251946[21] Koh K J, Rebeiz G M. 0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays. IEEE J Solid State Circuits, 2007, 42(11), 2535 doi: 10.1109/JSSC.2007.907225[22] Indirayanti P, Reynaert P. A 32 GHz 20 dBm-PSAT transformer-based Doherty power amplifier for multi-Gb/s 5G applications in 28 nm bulk CMOS. 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017, 45 doi: 10.1109/RFIC.2017.7969013[23] Fang X H, Xia J J, Boumaiza S. A 28-GHz beamforming Doherty power amplifier with enhanced AM-PM characteristic. IEEE Trans Microw Theory Tech, 2020, 68(7), 3017 doi: 10.1109/TMTT.2020.2968318[24] Yu C Y, Feng J, Zhao D X. A 28-GHz Doherty power amplifier with a compact transformer-based quadrature hybrid in 65-nm CMOS. IEEE Trans Circuits Syst II Express Briefs, 2021, 68(8), 2790 doi: 10.1109/TCSII.2021.3068473 -
Proportional views