Citation: |
Chenguang Shen, Mengwei Chen, Wei Huang, Yingping Yang. Research on heterojunction semiconductor photodetectors based on CsPbBr3 QDs/CsPbBrxI3–x QDs[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25010022
****
C G Shen, M W Chen, W Huang, and Y P Yang, Research on heterojunction semiconductor photodetectors based on CsPbBr3 QDs/CsPbBrxI3–x QDs[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25010022
|
Research on heterojunction semiconductor photodetectors based on CsPbBr3 QDs/CsPbBrxI3–x QDs
DOI: 10.1088/1674-4926/25010022
CSTR: 32376.14.1674-4926.25010022
More Information-
Abstract
All-inorganic CsPbBr3 perovskite quantum dots (QDs) have attracted extensive attention in photoelectric detection for their excellent photoelectric properties and stability. However, the CsPbBr3 quantum dot film exhibits a high non-radiative recombination rate, and the mismatch in energy levels with the carbon electrode weakens hole extraction efficiency. These reduces the device's performance. To improve this, a semiconductor photodetector based on fluorine-doped tin oxide (FTO)/dense titanium dioxide (c-TiO2)/mesoporous titanium dioxide (m-TiO2)/CsPbBr3 QDs/CsPbBrxI3–x (x = 2, 1.5, 1) QDs/C structure was studied. By adjusting the Br– : I– ratio, the synthesized CsPbBrxI3–x (x = 2, 1.5, 1) QDs showed an adjustable band gap width of 2.284−2.394 eV. And forming a type II band structure with CsPbBr3 QDs, which reduced the valence band offset between the active layer and the carbon electrode, this promoted carrier extraction and reduced non-radiative recombination rate. Compared with the original device (the photosensitive layer is CsPbBr3 QDs), the performance of the photodetector based on the CsPbBr3 QDs/CsPbBr2I QDs heterostructure is significantly improved, the responsivity (R) increased by 73%, the specific detectivity rate (D*) increased from 6.98 × 1012 to 3.19 × 1013 Jones, the on/off ratio reached 106. This study provides a new idea for the development of semiconductor tandem detectors. -
References
[1] Yadav S N S, Hanmandlu C, Patel D K, et al. Enhanced photoresponsivity of perovskite QDs/graphene hybrid gate-free photodetector by morphologically controlled plasmonic Au nanocrystals. Adv Opt Mater, 2023, 11(15), 2300131 doi: 10.1002/adom.202300131[2] Liu D, Yin Y X, Liu F J, et al. Thickness-dependent highly sensitive photodetection behavior of lead-free all-inorganic CsSnBr3 nanoplates. Rare Met, 2022, 41(5), 1753 doi: 10.1007/s12598-021-01909-8[3] Mandal A, Ghosh A, Ghosh D, et al. Photodetectors with high responsivity by thickness tunable mixed halide perovskite nanosheets. ACS Appl Mater Interfaces, 2021, 13(36), 43104 doi: 10.1021/acsami.1c13452[4] Chen K Q, Jin W, Zhang Y P, et al. High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering. J Am Chem Soc, 2020, 142(8), 3775 doi: 10.1021/jacs.9b10700[5] Han M M, Sun J M, Peng M, et al. Controllable growth of lead-free all-inorganic perovskite nanowire array with fast and stable near-infrared photodetection. J Phys Chem C, 2019, 123(28), 17566 doi: 10.1021/acs.jpcc.9b03289[6] Jing H, Peng R W, Ma R M, et al. Flexible ultrathin single-crystalline perovskite photodetector. Nano Lett, 2020, 20(10), 7144 doi: 10.1021/acs.nanolett.0c02468[7] Popoola A, Gondal M A, Popoola I K, et al. Fabrication of bifacial sandwiched heterojunction photoconductor–Type and MAI passivated photodiode–Type perovskite photodetectors. Org Electron, 2020, 84, 105730 doi: 10.1016/j.orgel.2020.105730[8] Jia D L, Chen J X, Zhuang R S, et al. Antisolvent-assisted in situ cation exchange of perovskite quantum dots for efficient solar cells. Adv Mater, 2023, 35(21), e2212160 doi: 10.1002/adma.202212160[9] Yang Z, Xu Q, Wang X D, et al. Large and ultrastable all-inorganic CsPbBr3 monocrystalline films: Low-temperature growth and application for high-performance photodetectors. Adv Mater, 2018, 30(44), e1802110 doi: 10.1002/adma.201802110[10] Li J, Zhang G D, Zhang Z H, et al. Defect passivation via additive engineering to improve photodetection performance in CsPbI2Br perovskite photodetectors. ACS Appl Mater Interfaces, 2021, 13(47), 56358 doi: 10.1021/acsami.1c19323[11] Liu S L, Gao W Q, Chen Y, et al. Van der waals integration of large-area monocrystalline 3D perovskite thin films on arbitrary semiconductor substrates for heterojunctions. Nano Lett, 2024, 24(25), 7724 doi: 10.1021/acs.nanolett.4c01715[12] Zhu H W, Tong G Q, Li J C, et al. Enriched-bromine surface state for stable sky-blue spectrum perovskite QLEDs with an EQE of 14.6. Adv Mater, 2022, 34(37), e2205092 doi: 10.1002/adma.202205092[13] Li S, Shi Z F, Zhang F, et al. Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices. Chem Mater, 2019, 31(11), 3917 doi: 10.1021/acs.chemmater.8b05362[14] Chen H J, Zhang M, Fu X, et al. Light-activated inorganic CsPbBr2I perovskite for room-temperature self-powered chemical sensing. Phys Chem Chem Phys, 2019, 21(43), 24187 doi: 10.1039/C9CP03059J[15] Chen Y L, Hu Y H, Ma L, et al. Self-assembled CsPbBr3 quantum dots with wavelength-tunable photoluminescence for efficient active jamming. Nanoscale, 2022, 14(48), 17900 doi: 10.1039/D2NR05314D[16] Shen K, Xu H, Li X, et al. Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr3 quantum dots. Adv Mater, 2020, 32(22), e2000004 doi: 10.1002/adma.202000004[17] Cong H, Chu X B, Wan F S, et al. Broadband photodetector based on inorganic perovskite CsPbBr3/GeSn heterojunction. Small Methods, 2021, 5(8), e2100517 doi: 10.1002/smtd.202100517[18] Liu Q B, Liang L H, Shen H Z, et al. Epitaxial growth of CsPbBr3-PbS vertical and lateral heterostructures for visible to infrared broadband photodetection. Nano Res, 2021, 14(11), 3879 doi: 10.1007/s12274-021-3308-0[19] Han Y, Li G H, Ji T, et al. Detecting visible to near-infrared II light via CsPbBr3 nanocrystals/Y6 heterojunctions. ACS Appl Mater Interfaces, 2024, 16(19), 25385 doi: 10.1021/acsami.4c03712[20] Kim M, Bae G, Kim K N, et al. Perovskite quantum dot-induced monochromatization for broadband photodetection of wafer-scale molybdenum disulfide. NPG Asia Mater, 2022, 14, 89 doi: 10.1038/s41427-022-00435-y[21] Jeong S J, Cho S, Moon B, et al. Zero dimensional-two dimensional hybrid photodetectors using multilayer MoS2 and lead halide perovskite quantum dots with a tunable bandgap. ACS Appl Mater Interfaces, 2023, 15(4), 5432 doi: 10.1021/acsami.2c17200[22] Li Z B, Li H N, Jiang K, et al. Self-powered perovskite/CdS heterostructure photodetectors. ACS Appl Mater Interfaces, 2019, 11(43), 40204 doi: 10.1021/acsami.9b11835[23] Ding N, Wu Y J, Xu W, et al. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared. Light Sci Appl, 2022, 11(1), 91 doi: 10.1038/s41377-022-00777-w[24] Li Z B, Li J N, Ding D, et al. Direct observation of perovskite photodetector performance enhancement by atomically thin interface engineering. ACS Appl Mater Interfaces, 2018, 10(42), 36493 doi: 10.1021/acsami.8b10971[25] Min X, Jiang F Y, Qin F, et al. Polyethylenimine aqueous solution: A low-cost and environmentally friendly formulation to produce low-work-function electrodes for efficient easy-to-fabricate organic solar cells. ACS Appl Mater Interfaces, 2014, 6(24), 22628 doi: 10.1021/am5077974[26] Imran M, Peng L C, Pianetti A, et al. Halide perovskite-lead chalcohalide nanocrystal heterostructures. J Am Chem Soc, 2021, 143(3), 1435 doi: 10.1021/jacs.0c10916[27] Yao E P, Bohn B J, Tong Y, et al. Exciton diffusion lengths and dissociation rates in CsPbBr3 nanocrystal–fullerene composites: Layer-by-layer versus blend structures. Adv Opt Mater, 2019, 7(8), 1801776 doi: 10.1002/adom.201801776[28] Guan Y W, Zhang C H, Liu Z, et al. Single-crystalline perovskite p-n junction nanowire arrays for ultrasensitive photodetection. Adv Mater, 2022, 34(35), e2203201 doi: 10.1002/adma.202203201[29] Liu S L, Chen Y, Gao W Q, et al. Epitaxy of a monocrystalline CsPbBr3-SrTiO3 halide-oxide perovskite p-n heterojunction with high stability for photodetection. Adv Mater, 2023, 35(31), e2303544 doi: 10.1002/adma.202303544[30] Zhang T. Study on the preparation of lead-based perovskite thin films and application of optoelectronic devices. University of Electronic Science and Technology of China, 2020[31] Zhang Z, Zhang W T, Jiang Q B, et al. Toward high-performance electron/hole-transporting-layer-free, self-powered CsPbIBr2 photodetectors via interfacial engineering. ACS Appl Mater Interfaces, 2020, 12(5), 6607 doi: 10.1021/acsami.9b19075[32] Wieliczka B M, Habisreutinger S N, Schutt K, et al. Nanocrystal-enabled perovskite heterojunctions in photovoltaic applications and beyond. Adv Energy Mater, 2023, 13(22), 2204351 doi: 10.1002/aenm.202204351[33] Deng J D, Wang H R, Xun J, et al. Room-temperature synthesis of excellent-performance CsPb1– xSn xBr3 perovskite quantum dots and application in light emitting diodes. Mater Des, 2020, 185, 108246 doi: 10.1016/j.matdes.2019.108246[34] Jing Q, Zhang M, Huang X, et al. Surface passivation of mixed-halide perovskite CsPb(Br xI1– x)3 nanocrystals by selective etching for improved stability. Nanoscale, 2017, 9(22), 7391 doi: 10.1039/C7NR01287J[35] Nedelcu G, Protesescu L, Yakunin S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 2015, 15(8), 5635 doi: 10.1021/acs.nanolett.5b02404[36] Hautzinger M P, Raulerson E K, Harvey S P, et al. Metal halide perovskite heterostructures: Blocking anion diffusion with single-layer graphene. J Am Chem Soc, 2023, 145(4), 2052 doi: 10.1021/jacs.2c12441 -
Proportional views