Citation: |
Zhizhong Wang, Jingting He, Fuping Huang, Xuchen Gao, Kangkai Tian, Chunshuang Chu, Yonghui Zhang, Shuting Cai, Xiaojuan Sun, Dabing Li, Xiao Wei Sun, Zi-Hui Zhang. AlGaN/GaN-based SBDs grown on silicon substrates with trenched n+-GaN cap layer and local passivation layer to improve BFOM and dynamic properties[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25010024
****
Z Z Wang, J T He, F P Huang, X C Gao, K K Tian, C S Chu, Y H Zhang, S T Cai, X J Sun, D B Li, X W Sun, and Z-H Zhang, AlGaN/GaN-based SBDs grown on silicon substrates with trenched n+-GaN cap layer and local passivation layer to improve BFOM and dynamic properties[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25010024
|
AlGaN/GaN-based SBDs grown on silicon substrates with trenched n+-GaN cap layer and local passivation layer to improve BFOM and dynamic properties
DOI: 10.1088/1674-4926/25010024
CSTR: 32376.14.1674-4926.25010024
More Information-
Abstract
In this work, we design and fabricate AlGaN/GaN-based Schottky barrier diodes (SBDs) on a silicon substrate with a trenched n+-GaN cap layer. With the developed physical models, we find that the n+-GaN cap layer provides more electrons into the AlGaN/GaN channel, which is further confirmed experimentally. When compared with the reference device, this increases the two-dimensional electron gas (2DEG) density by two times and leads to a reduced specific ON-resistance (Ron,sp)of ~2.4 mΩ·cm2. We also adopt the trenched n+-GaN structure such that partial of the n+-GaN is removed by using dry etching process to eliminate the surface electrical conduction when the device is set in the off-state. To suppress the surface defects that are caused by the dry etching process, we also deposit Si3N4 layer prior to the deposition of field plate (FP), and we obtain a reduced leakage current of ~8 × 10−5 A·cm−2 and breakdown voltage (BV) of 876 V. The Baliga’s figure of merit (BFOM) for the proposed structure is increased to ~319 MW·cm−2. Our investigations also find that the pre-deposited Si3N4 layer helps suppress the electron capture and transport processes, which enables the reduced dynamic Ron,sp. -
References
[1] Islam N, Mohamed M F P, Khan M F A J, et al. Reliability, applications and challenges of GaN HEMT technology for modern power devices: A review. Crystals, 2022, 12(11), 1581 doi: 10.3390/cryst12111581[2] Mounika B, Ajayan J, Bhattacharya S, et al. Recent developments in materials, architectures and processing of AlGaN/GaN HEMTs for future RF and power electronic applications: A critical review. Micro Nanostruct, 2022, 168, 207317 doi: 10.1016/j.micrna.2022.207317[3] Zhang T, Wang Y, Zhang Y N, et al. Comprehensive annealing effects on AlGaN/GaN Schottky barrier diodes with different work-function metals. IEEE Trans Electron Devices, 2021, 68(6), 2661 doi: 10.1109/TED.2021.3074896[4] Zhou Q, Jin Y, Shi Y Y, et al. High reverse blocking and low onset voltage AlGaN/GaN-on-Si lateral power diode with MIS-gated hybrid anode. IEEE Electron Device Lett, 2015, 36(7), 660 doi: 10.1109/LED.2015.2432171[5] Rajagopal Reddy V, Janardhanam V, Ju J W, et al. Electronic parameters and carrier transport mechanism of high-barrier Se Schottky contacts to n-type GaN. Solid State Commun, 2014, 179, 34 doi: 10.1016/j.ssc.2013.11.011[6] Yang X X, Cheng Z, Yu Z G, et al. The influence of anode trench geometries on electrical properties of AlGaN/GaN Schottky barrier diodes. Electronics, 2020, 9(2), 282 doi: 10.3390/electronics9020282[7] Wang T F, Zong Y, Nela L, et al. Enhancement-mode multi-channel AlGaN/GaN transistors with LiNiO junction tri-gate. IEEE Electron Device Lett, 2022, 43(9), 1523 doi: 10.1109/LED.2022.3189635[8] Nela L, Xiao M, Zhang Y H, et al. A perspective on multi-channel technology for the next-generation of GaN power devices. Appl Phys Lett, 2022, 120(19), 190501 doi: 10.1063/5.0086978[9] Li C K, Wu Y R. Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs. IEEE Trans Electron Devices, 2012, 59(2), 400 doi: 10.1109/TED.2011.2176132[10] Ibbetson J P, Fini P T, Ness K D, et al. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl Phys Lett, 2000, 77(2), 250 doi: 10.1063/1.126940[11] Lee J H, Im K S, Lee J H. Effect of In-situ silicon carbon nitride (SiCN) cap layer on performances of AlGaN/GaN MISHFETs. IEEE J Electron Devices Soc, 2021, 9, 728 doi: 10.1109/JEDS.2021.3100760[12] Hsu L, Jones R E, Li S X, et al. Electron mobility in InN and III-N alloys. J Appl Phys, 2007, 102(7), 073705 doi: 10.1063/1.2785005[13] Wang J X, Yang S Y, Wang J, et al. Electron mobility limited by surface and interface roughness scattering in Al xGa1− xN/GaN quantum wells. Chin Phys B, 2013, 22(7), 077305 doi: 10.1088/1674-1056/22/7/077305[14] Ko T S, Lin D Y, Lin C F, et al. High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer. J Cryst Growth, 2017, 464, 175 doi: 10.1016/j.jcrysgro.2016.12.023[15] Liu Z H, Ng G I, Zhou H, et al. Reduced surface leakage current and trapping effects in AlGaN/GaN high electron mobility transistors on silicon with SiN/Al2O3 passivation. Appl Phys Lett, 2011, 98(11), 113506 doi: 10.1063/1.3567927[16] Rahman M W, Chandrasekar H, Razzak T, et al. Hybrid BaTiO3/SiNx/AlGaN/GaN lateral Schottky barrier diodes with low turn-on and high breakdown performance. Appl Phys Lett, 2021, 119(1), 013504 doi: 10.1063/5.0055946[17] Huang F P, Wang Z Z, Chu C S, et al. MIS-based GaN Schottky barrier diodes: Interfacial conditions on the reverse and forward properties. IEEE Trans Electron Devices, 2022, 69(10), 5522 doi: 10.1109/TED.2022.3201831[18] Gao X C, He F, Huang F P, et al. Investigation into the impact of bulk defects in the drift layer on the electrical properties of GaN-based trench Schottky barrier diodes. Jpn J Appl Phys, 2024, 63(5), 054003 doi: 10.35848/1347-4065/ad40eb[19] Wong M S, Lee C M, Myers D J, et al. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation. Appl Phys Express, 2019, 12(9), 097004 doi: 10.7567/1882-0786/ab3949[20] Wang H Y, Mao W, Yang C, et al. Lateral AlGaN/GaN Schottky barrier diode with arrayed p-GaN islands termination. IEEE Trans Electron Devices, 2021, 68(12), 6046 doi: 10.1109/TED.2021.3118326[21] Xiao M, Du Z H, Xie J Q, et al. Lateral p-GaN/2DEG junction diodes by selective-area p-GaN trench-filling-regrowth in AlGaN/GaN. Appl Phys Lett, 2020, 116(5), 053503 doi: 10.1063/1.5139906[22] Dang K, Zhang J C, Zhou H, et al. Lateral GaN Schottky barrier diode for wireless high-power transfer application with high RF/DC conversion efficiency: From circuit construction and device technologies to system demonstration. IEEE Trans Ind Electron, 2020, 67(8), 6597 doi: 10.1109/TIE.2019.2939968[23] Huang F P, Chu C S, Wang Z Z, et al. 1.43 kV GaN-based MIS Schottky barrier diodes. J Phys D: Appl Phys, 2024, 57(18), 185102 doi: 10.1088/1361-6463/ad256c[24] Letts E, Hashimoto T, Ikari M, et al. Development of GaN wafers for solid-state lighting via the ammonothermal method. J Cryst Growth, 2012, 350(1), 66 doi: 10.1016/j.jcrysgro.2011.12.024[25] Wang B F, Liu L, Tian G, et al. Studying the effect of temperature and pressure on GaN crystals via the Na-flux method. CrystEngComm, 2024, 26(24), 3176 doi: 10.1039/D4CE00314D[26] Yang S, Han S W, Sheng K, et al. Dynamic on-resistance in GaN power devices: Mechanisms, characterizations, and modeling. IEEE J Emerg Sel Top Power Electron, 2019, 7(3), 1425 doi: 10.1109/JESTPE.2019.2925117[27] Zhong Y Z, Zhang J W, Wu S, et al. A review on the GaN-on-Si power electronic devices. Fundam Res, 2022, 2(3), 462 doi: 10.1016/j.fmre.2021.11.028[28] Li H, Bai Z Y, Yang L. Investigation of double RESURF P-GaN gate AlGaN/GaN heterostructure field-effect transistors with partial N-GaN channels. J Electron Mater, 2024, 53(5), 2562 doi: 10.1007/s11664-024-10987-0[29] Lei J C, Wei J, Tang G F, et al. 650-V double-channel lateral Schottky barrier diode with dual-recess gated anode. IEEE Electron Device Lett, 2018, 39(2), 260 doi: 10.1109/LED.2017.2783908[30] Xu J Y, Liu X, Xie B, et al. Correlation between reverse leakage current and electric field spreading in GaN vertical SBD with high-energy ion implanted guard rings. IEEE Trans Electron Devices, 2023, 70(4), 1745 doi: 10.1109/TED.2023.3241260[31] Chen H, Wang H Y, Sheng K. Vertical β-Ga2O3 Schottky barrier diodes with field plate assisted negative beveled termination and positive beveled termination. IEEE Electron Device Lett, 2023, 44(1), 21 doi: 10.1109/LED.2022.3222878[32] Wang Z Z, Huang F P, Chu C S, et al. 2.5 kV/1.95 GW/cm2 AlGaN/GaN-based lateral Schottky barrier diodes with a high-k field plate to reduce reverse current. IEEE Trans Electron Devices, 2024, 71(6), 3811 doi: 10.1109/TED.2024.3388377[33] Nguyen X S, Goh X L, Zhang L, et al. Deep level traps in GaN LEDs grown by metal organic vapour phase epitaxy on an 8 inch Si(111) substrate. Jpn J Appl Phys, 2016, 55(6), 060306 doi: 10.7567/JJAP.55.060306[34] Cho H K, Kim C S, Hong C H. Electron capture behaviors of deep level traps in unintentionally doped and intentionally doped n-type GaN. J Appl Phys, 2003, 94(3), 1485 doi: 10.1063/1.1586981[35] Soh C B, Chua S J, Lim H F, et al. Identification of deep levels in GaN associated with dislocations. J Phys Condens Matter, 2004, 16(34), 6305 doi: 10.1088/0953-8984/16/34/027[36] Lee I H, Polyakov A Y, Smirnov N B, et al. Spatial location of the Ec-0.6 eV electron trap in AlGaN/GaN heterojunctions. J Vac Sci Technol B, 2014, 32(5), 050602 doi: 10.1116/1.4895840[37] Cao L N, Wang J S, Harden G, et al. Experimental characterization of impact ionization coefficients for electrons and holes in GaN grown on bulk GaN substrates. Appl Phys Lett, 2018, 112(26), 262103 doi: 10.1063/1.5031785[38] Ambacher O, Smart J, Shealy J R, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J Appl Phys, 1999, 85(6), 3222 doi: 10.1063/1.369664[39] Huang F P, Chu C S, Jia X Y, et al. Simulation study for GaN-based hybrid trench MOS barrier Schottky diode with an embedded p-type NiO termination: Increased forward current density and enhanced breakdown voltage. Jpn J Appl Phys, 2022, 61(1), 014002 doi: 10.35848/1347-4065/ac40cf[40] Tokuda Y. (invited) DLTS studies of defects in n-GaN. ECS Trans, 2016, 75(4), 39 doi: 10.1149/07504.0039ecst[41] Faraz S M, Ashraf H, Imran Arshad M, et al. Interface state density of free-standing GaN Schottky diodes. Semicond Sci Technol, 2010, 25(9), 095008 doi: 10.1088/0268-1242/25/9/095008[42] Jackson C M, Arehart A R, Cinkilic E, et al. Interface trap characterization of atomic layer deposition Al2O3/GaN metal-insulator-semiconductor capacitors using optically and thermally based deep level spectroscopies. J Appl Phys, 2013, 113(20), 204505 doi: 10.1063/1.4808093[43] Aoshima K, Taoka N, Horita M, et al. SiO2/GaN interfaces with low defect densities and high breakdown electric fields formed by plasma-enhanced atomic layer deposition. Jpn J Appl Phys, 2022, 61, SC1073 doi: 10.35848/1347-4065/ac4f79[44] Kotani J, Tajima M, Kasai S, et al. Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN / GaN heterostructures. Appl Phys Lett, 2007, 91(9), 093501 doi: 10.1063/1.2775834[45] Zhang T, Zhang J C, Zhang W H, et al. Investigation of an AlGaN-channel Schottky barrier diode on a silicon substrate with a molybdenum anode. Semicond Sci Technol, 2021, 36(4), 044003 doi: 10.1088/1361-6641/abcbd5[46] Xiao M, Ma Y W, Liu K, et al. 10 kV, 39 mΩ·cm2 multi-channel AlGaN/GaN Schottky barrier diodes. IEEE Electron Device Lett, 2021, 42(6), 808 doi: 10.1109/LED.2021.3076802[47] Xiao M, Ma Y, Du Z, et al. 5 kV Multi-Channel AlGaN/GaN Power Schottky Barrier Diodes with Junction-Fin-Anode. 2020 IEEE International Electron Devices Meeting (IEDM), 2020, 5.4.1[48] Wang T T, Wang X, Cui Z H, et al. Metal-nitride dual-anode AlGaN/GaN heterostructure Schottky barrier diodes with tunable turn-on voltage and reverse leakage current. Semicond Sci Technol, 2022, 37(4), 045013 doi: 10.1088/1361-6641/ac5676[49] Lu Y, Zhou F, Xu W Z, et al. Multi-aperture anode based AlGaN/GaN Schottky barrier diodes with low turn-on voltage and high uniformity. Appl Phys Express, 2020, 13(9), 096502 doi: 10.35848/1882-0786/abaf0e[50] Zhang T, Zhang Y N, Li R H, et al. Current transport mechanism of AlGaN-channel Schottky barrier diode with extremely low leakage current and high blocking voltage of 2.55 kV. Appl Phys Lett, 2022, 120(9), 092102 doi: 10.1063/5.0077691[51] Deng S, Liu K, Wang C, et al. The influence of recessed floating metal rings structure on electrical properties of AlGaN/GaN Schottky barrier diodes. Phys Status Solidi A, 2022, 219(2), 2100502 doi: 10.1002/pssa.202100502[52] Hsueh K P, Chang Y S, Li B H, et al. Effect of the AlGaN/GaN Schottky barrier diodes combined with a dual anode metal and a p-GaN layer on reverse breakdown and turn-on voltage. Mater Sci Semicond Process, 2019, 90, 107 doi: 10.1016/j.mssp.2018.10.013[53] Zhang T, Zhang J C, Zhou H, et al. A >3 kV/2.94 mΩ·cm2 and low leakage current with low turn-on voltage lateral GaN Schottky barrier diode on silicon substrate with anode engineering technique. IEEE Electron Device Lett, 2019, 40(10), 1583 doi: 10.1109/LED.2019.2933314[54] Xu R, Chen P, Liu M H, et al. 2.7-kV AlGaN/GaN Schottky barrier diode on silicon substrate with recessed-anode structure. Solid State Electron, 2021, 175, 107953 doi: 10.1016/j.sse.2020.107953[55] Zhu M D, Song B, Qi M, et al. 1.9-kV AlGaN/GaN lateral Schottky barrier diodes on silicon. IEEE Electron Device Lett, 2015, 36(4), 375 doi: 10.1109/LED.2015.2404309[56] Matioli E, Lu B, Palacios T. Ultralow leakage Current AlGaN/GaN Schottky diodes with 3-D anode structure. IEEE Trans Electron Devices, 2013, 60(10), 3365 doi: 10.1109/TED.2013.2279120[57] Gao J N, Jin Y F, Xie B, et al. Low ON-resistance GaN Schottky barrier diode with high VON uniformity using LPCVD Si3N4 compatible self-terminated, low damage anode recess technology. IEEE Electron Device Lett, 2018, 39(6), 859 doi: 10.1109/LED.2018.2830998[58] Boles T, Varmazis C, Carlson D, et al. >1200 V GaN-on-silicon Schottky diode. Phys Status Solidi C, 2013, 10(5), 835. doi: 10.1002/pssc.201200589[59] Gao J N, Wang M J, Yin R Y, et al. Schottky-MOS hybrid anode AlGaN/GaN lateral field-effect rectifier with low onset voltage and improved breakdown voltage. IEEE Electron Device Lett, 2017, 38(10), 1425 doi: 10.1109/LED.2017.2737520[60] Maeda T, Narita T, Yamada S, et al. Impact ionization coefficients and critical electric field in GaN. J Appl Phys, 2021, 129(18), 185702 doi: 10.1063/5.0050793[61] Ji D, Ercan B, Chowdhury S. Experimental determination of impact ionization coefficients of electrons and holes in gallium nitride using homojunction structures. Appl Phys Lett, 2019, 115(7), 073503 doi: 10.1063/1.5099245 -
Proportional views