J. Semicond. >  Just Accepted

ARTICLES

Improving Electrical Performance and Fringe Effect in p-Type SnOx Thin Film Transistors via Ta Incorporation

Yu Song1, Runtong Guo1, Ruohao Hong1, Rui He1, Xuming Zou1, Benjamin Iñiguez3, Denis Flandre4, Lei Liao2 and Guoli Li2,

+ Author Affiliations

 Corresponding author: Guoli Li, liguoli_lily@hnu.edu.cn

DOI: 10.1088/1674-4926/25010031CSTR: 32376.14.1674-4926.25010031

PDF

Turn off MathJax

Abstract: In this work, the incorporation of Tantalum (Ta) into p-type metal-oxide (SnOx) semiconductor film is investigated to improve the electrical characteristics and suppress the fringe effect of thin film transistors (TFTs). The Ta-doped SnOx (SnOx:Ta) film is deposited by radio-frequency (RF) magnetron sputtering with a Sn:Ta (3at.%) target and thermally annealed at 270 °C for 30 mins. Here, we observe that the SnOx:Ta film presents increased crystallinity, reduced defect density (3.25 × 1012 cm−2eV−1), and widened bandgap (1.98 eV), in comparison with the undoped SnOx film. As a result, the SnOx:Ta TFTs exhibit a lower off-state current (Ioff), an improved on/off current ratio (2.17 × 104), a remarkably decreased subthreshold swing (SS) by 41%, and enhanced device stability. Additionally, by introducing Ta dopants, the fringe effect as well as the impact of channel width-to-length ratio (W/L) on electrical performances of the p-type oxide TFTs can be effectively suppressed. These results shall contribute to further exploration and development of p-type SnOx TFTs.

Key words: tin monoxidep-type thin film transistorsTa dopingfringe effecton/off current ratio



[1]
Wang Z W, Nayak P K, Caraveo-Frescas J A, et al. Recent developments in p-type oxide semiconductor materials and devices. Adv Mater, 2016, 28(20), 3831 doi: 10.1002/adma.201503080
[2]
Jeong H, Kong C S, Chang S W, et al. Temperature sensor made of amorphous indium–gallium–zinc oxide TFTs. IEEE Electron Device Lett, 2013, 34(12), 1569 doi: 10.1109/LED.2013.2286824
[3]
Hung M H, Chen C H, Lai Y C, et al. Ultra low voltage 1-V RFID tag implement in a-IGZO TFT technology on plastic. 2017 IEEE International Conference on RFID (RFID). Phoenix, AZ, USA. IEEE, 2017, 193
[4]
Zhang W, Liang R R, Liu L B, et al. Demonstration of α-InGaZnO TFT nonvolatile memory using TiAlO charge trapping layer. IEEE Trans Nanotechnol, 2018, 17(6), 1089 doi: 10.1109/TNANO.2018.2810885
[5]
Shiah Y S, Sim K, Shi Y H, et al. Mobility–stability trade-off in oxide thin-film transistors. Nat Electron, 2021, 4, 800 doi: 10.1038/s41928-021-00671-0
[6]
Nomura K, Kamiya T, Hosono H. Ambipolar oxide thin-film transistor. Adv Mater, 2011, 23(30), 3431 doi: 10.1002/adma.201101410
[7]
Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, et al. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano, 2013, 7(6), 5160 doi: 10.1021/nn400852r
[8]
Hu Y Q, Yao X L, Schlom D G, et al. First principles design of high hole mobility p-type Sn−O−X ternary oxides: Valence orbital engineering of Sn2+ in Sn2+−O−X by selection of appropriate elements X. Chem Mater, 2021, 33(1), 212 doi: 10.1021/acs.chemmater.0c03495
[9]
Hsu S M, Yang C E, Lu M H, et al. Mobility enhancement in P-type SnO thin-film transistors via Ni incorporation by co-sputtering. IEEE Electron Device Lett, 2022, 43(2), 228 doi: 10.1109/LED.2021.3136966
[10]
Qin L, Yuan S G, Chen Z Q, et al. Solution-processed transparent p-type orthorhombic K doped SnO films and their application in a phototransistor. Nanoscale, 2022, 14(37), 13763 doi: 10.1039/D2NR03785H
[11]
Zhang Z F, Guo Y Z, Robertson J. P-type semiconduction in oxides with cation lone pairs. Chem Mater, 2022, 34(2), 643 doi: 10.1021/acs.chemmater.1c03323
[12]
Hu Y Q, Hwang J, Lee Y, et al. First principles calculations of intrinsic mobilities in tin-based oxide semiconductors SnO, SnO2, and Ta2SnO6. J Appl Phys, 2019, 126(18), 185701 doi: 10.1063/1.5109265
[13]
Hu Y Q, Schlom D, Datta S, et al. Amorphous Ta2SnO6: A hole-dopable p-type oxide. Appl Surf Sci, 2023, 613, 155981 doi: 10.1016/j.apsusc.2022.155981
[14]
Barone M, Foody M, Hu Y Q, et al. Growth of Ta2SnO6 films, a candidate wide-band-gap p-type oxide. J Phys Chem C, 2022, 126(7), 3764 doi: 10.1021/acs.jpcc.1c10382
[15]
Huang A P, Chu P K. Crystallization improvement of Ta2O5 thin films by the addition of water vapor. J Cryst Growth, 2005, 274(1/2), 73
[16]
Huang A P, Xu S L, Zhu M K, et al. Crystallization control of sputtered Ta2O5 thin films by substrate bias. Appl Phys Lett, 2003, 83(16), 3278 doi: 10.1063/1.1610247
[17]
Zhou Y Y, Song Y, Hong R H, et al. Electrical evolution of p-type SnOx film and transistor deposited by RF magnetron sputtering. IEEE Trans Electron Devices, 2023, 70(6), 3100 doi: 10.1109/TED.2023.3266417
[18]
Perron A, Politano O, Vignal V. Grain size, stress and surface roughness. Surf Interface Anal, 2008, 40(3/4), 518
[19]
Ono H, Koyanagi K I. Infrared absorption peak due to Ta=O bonds in Ta2O5 thin films. Appl Phys Lett, 2000, 77(10), 1431 doi: 10.1063/1.1290494
[20]
Zhao Y P, Wang Z X, Xu G W, et al. High performance indium-gallium-zinc oxide thin film transistor via interface engineering. Adv Funct Materials, 2020, 30(34), 2003285 doi: 10.1002/adfm.202003285
[21]
Lee S J, Jang Y, Kim H J, et al. Composition, microstructure, and electrical performance of sputtered SnO thin films for p-type oxide semiconductor. ACS Appl Mater Interfaces, 2018, 10(4), 3810 doi: 10.1021/acsami.7b17906
[22]
Bae K H, Shin M G, Hwang S H, et al. Electrical performance and stability improvement of p-channel SnO thin-film transistors using atomic-layer-deposited Al2O3 capping layer. IEEE Access, 2020, 8, 222410 doi: 10.1109/ACCESS.2020.3043780
[23]
Makuła P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra. J Phys Chem Lett, 2018, 9(23), 6814 doi: 10.1021/acs.jpclett.8b02892
[24]
Qiao L S, He G, Hao L, et al. Interface optimization of passivated Er2O3/Al2O3/InP MOS capacitors and modulation of leakage current conduction mechanism. IEEE Trans Electron Devices, 2021, 68(6), 2899 doi: 10.1109/TED.2021.3072928
[25]
Yan Y Y, Kilchytska V, Flandre D, et al. Investigation and optimization of traps properties in Al2O3/SiO2 dielectric stacks using conductance method. Solid State Electron, 2022, 194, 108347 doi: 10.1016/j.sse.2022.108347
[26]
Han S, Flewitt A J. The origin of the high off-state current in p-type Cu2O thin film transistors. IEEE Electron Device Lett, 2017, 38(10), 1394 doi: 10.1109/LED.2017.2748064
[27]
Chen C D, Chen Z H, Xu K J, et al. Thin-film transistors with the fringe effect and the correction factor for mobility extraction. IEEE Electron Device Lett, 2019, 40(6), 897 doi: 10.1109/LED.2019.2909282
[28]
Pei K, Chen M, Zhou Z W, et al. Overestimation of carrier mobility in organic thin film transistors due to unaccounted fringe currents. ACS Appl Electron Mater, 2019, 1(3), 379 doi: 10.1021/acsaelm.8b00097
[29]
Okamura K, Nikolova D, Mechau N, et al. Appropriate choice of channel ratio in thin-film transistors for the exact determination of field-effect mobility. Appl Phys Lett, 2009, 94(18), 183503 doi: 10.1063/1.3126956
[30]
Huang C H, Tang Y L, Yang T Y, et al. Atomically thin tin monoxide-based p-channel thin-film transistor and a low-power complementary inverter. ACS Appl Mater Interfaces, 2021, 13(44), 52783 doi: 10.1021/acsami.1c15990
[31]
Atlas User’s Manual: Device Simulation Software (Silvaco Inc. , Santa Clara, CA, 2019
[32]
Rajshekar K, Hsu H H, Kumar K U M, et al. Effect of plasma fluorination in p-type SnO TFTs: Experiments, modeling, and simulation. IEEE Trans Electron Devices, 2019, 66(3), 1314 doi: 10.1109/TED.2019.2895042
[33]
Shi Y P, Liu G X, Wu X M, et al. UV-ozone-assisted solution-processed high-k ZrO2 for MoS2 field-effect transistors. IEEE Trans Electron Devices, 2024, 71(4), 2789 doi: 10.1109/TED.2024.3365459
[34]
Qu Y X, Yang J, Li Y P, et al. Organic and inorganic passivation of p-type SnO thin-film transistors with different active layer thicknesses. Semicond Sci Technol, 2018, 33(7), 075001 doi: 10.1088/1361-6641/aac3c4
[35]
Park J S, Jeong J K, Chung H J, et al. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl Phys Lett, 2008, 92(7), 072104 doi: 10.1063/1.2838380
Fig. 1.  (Color online) (a) Schematic structure of the SnOx/SnOx:Ta TFTs. Transfer curves (IDSVGS) of the SnOx and SnOx:Ta TFTs (b) after annealed at different temperature for 30 min., (c) deposited in an OPP range of 2.3%−4.3%, (d) with a different channel thickness.

Fig. 2.  (Color online) (a) GIXRD patterns of the SnOx/SnOx:Ta films, the insets display AFM images. (b) XPS spectra of the Sn 3d orbitals and O 1s core−level. (c) Transmittance spectra; the inset shows (αhυ)1/2 versus plots.

Fig. 3.  (Color online) (a) Capacitance (CP) and conductance (G/ω) as a function of gate voltage VGS, in the SnOx/SnOx:Ta MOSCAPs after annealing for 30 min. (b) IDS−VGS curves (VDS = −1V) of the SnOx and SnOx:Ta TFTs. (c) Off-state current and on/off ratio. (d) μFET and SS.

Fig. 4.  (Color online) Current (in A/cm2) distribution inside channel and fringe region of the SnOx TFTs with (a) W/L = 1 and (b) W/L = 20 in the on-state (VGS = −50 V, VDS = −1 V). (c) Simulated and measured transfer characteristics (VDS = −1 V) for the SnOx TFTs with and without doping.

Fig. 5.  Transfer characteristics of the SnOx and SnOx:Ta TFTs after annealing for 30 min. under NBS (VGS = −20 V, VDS = −1 V) at 300 K (a) and 330 K (b). (c) Off-state current as a function of NBS stress duration, at 300 K and 330 K. (d) IDSVGS curves of the TFTs after 30 days of exposure in ambient air.

Table 1.   Electrical parameters of the SnOx/SnOx:Ta TFTs deposited at OPP = 3.3%.

Channel type Channel
thickness (nm)
μFET
(cm2/Vs)
SS
(V/dec)
Ion/off
SnOx 20 0.69 11.15 3.60 × 103
24 0.97 9.21 4.13 × 103
28 1.11 17.86 1.27 × 102
SnOx:Ta 20 0.50 7.44 1.54 × 104
24 1.12 7.19 2.13 × 104
28 0.74 7.19 1.01 × 104
DownLoad: CSV

Table 2.   Percentages of Sn0, Sn2+, Sn4+, OLatt, OVac, and OChem component by deconvoluting the XPS Sn 3d and O 1s profile.

FilmSn+4Sn2+Sn0OChemOVacOLatt
SnOx (10 min)58.47%22.13%19.40%6.77%78.14%15.09%
SnOx (30 min)31.66%49.18%19.16%76.41%12.58%11.01%
SnOx:Ta (30 min)25.12%52.03%22.85%41.86%20.07%38.07%
DownLoad: CSV

Table 3.   Key parameters for TCAD simulation.

Symbols (Unit)SnOxSnOx:Ta
NTA (cm−3eV−1)2.43 × 1020
NTD (cm−3eV−1)2.50 × 1021
NGD (cm−3eV−1)0.80 × 10181.70 × 1018
NGA (cm−3eV−1)0.95 × 10190.98 × 1019
EGD (eV)1.29
EGA (eV)0.77
Rc (Ω·μm)1.2 × 1040.8 × 104
DownLoad: CSV
[1]
Wang Z W, Nayak P K, Caraveo-Frescas J A, et al. Recent developments in p-type oxide semiconductor materials and devices. Adv Mater, 2016, 28(20), 3831 doi: 10.1002/adma.201503080
[2]
Jeong H, Kong C S, Chang S W, et al. Temperature sensor made of amorphous indium–gallium–zinc oxide TFTs. IEEE Electron Device Lett, 2013, 34(12), 1569 doi: 10.1109/LED.2013.2286824
[3]
Hung M H, Chen C H, Lai Y C, et al. Ultra low voltage 1-V RFID tag implement in a-IGZO TFT technology on plastic. 2017 IEEE International Conference on RFID (RFID). Phoenix, AZ, USA. IEEE, 2017, 193
[4]
Zhang W, Liang R R, Liu L B, et al. Demonstration of α-InGaZnO TFT nonvolatile memory using TiAlO charge trapping layer. IEEE Trans Nanotechnol, 2018, 17(6), 1089 doi: 10.1109/TNANO.2018.2810885
[5]
Shiah Y S, Sim K, Shi Y H, et al. Mobility–stability trade-off in oxide thin-film transistors. Nat Electron, 2021, 4, 800 doi: 10.1038/s41928-021-00671-0
[6]
Nomura K, Kamiya T, Hosono H. Ambipolar oxide thin-film transistor. Adv Mater, 2011, 23(30), 3431 doi: 10.1002/adma.201101410
[7]
Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, et al. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano, 2013, 7(6), 5160 doi: 10.1021/nn400852r
[8]
Hu Y Q, Yao X L, Schlom D G, et al. First principles design of high hole mobility p-type Sn−O−X ternary oxides: Valence orbital engineering of Sn2+ in Sn2+−O−X by selection of appropriate elements X. Chem Mater, 2021, 33(1), 212 doi: 10.1021/acs.chemmater.0c03495
[9]
Hsu S M, Yang C E, Lu M H, et al. Mobility enhancement in P-type SnO thin-film transistors via Ni incorporation by co-sputtering. IEEE Electron Device Lett, 2022, 43(2), 228 doi: 10.1109/LED.2021.3136966
[10]
Qin L, Yuan S G, Chen Z Q, et al. Solution-processed transparent p-type orthorhombic K doped SnO films and their application in a phototransistor. Nanoscale, 2022, 14(37), 13763 doi: 10.1039/D2NR03785H
[11]
Zhang Z F, Guo Y Z, Robertson J. P-type semiconduction in oxides with cation lone pairs. Chem Mater, 2022, 34(2), 643 doi: 10.1021/acs.chemmater.1c03323
[12]
Hu Y Q, Hwang J, Lee Y, et al. First principles calculations of intrinsic mobilities in tin-based oxide semiconductors SnO, SnO2, and Ta2SnO6. J Appl Phys, 2019, 126(18), 185701 doi: 10.1063/1.5109265
[13]
Hu Y Q, Schlom D, Datta S, et al. Amorphous Ta2SnO6: A hole-dopable p-type oxide. Appl Surf Sci, 2023, 613, 155981 doi: 10.1016/j.apsusc.2022.155981
[14]
Barone M, Foody M, Hu Y Q, et al. Growth of Ta2SnO6 films, a candidate wide-band-gap p-type oxide. J Phys Chem C, 2022, 126(7), 3764 doi: 10.1021/acs.jpcc.1c10382
[15]
Huang A P, Chu P K. Crystallization improvement of Ta2O5 thin films by the addition of water vapor. J Cryst Growth, 2005, 274(1/2), 73
[16]
Huang A P, Xu S L, Zhu M K, et al. Crystallization control of sputtered Ta2O5 thin films by substrate bias. Appl Phys Lett, 2003, 83(16), 3278 doi: 10.1063/1.1610247
[17]
Zhou Y Y, Song Y, Hong R H, et al. Electrical evolution of p-type SnOx film and transistor deposited by RF magnetron sputtering. IEEE Trans Electron Devices, 2023, 70(6), 3100 doi: 10.1109/TED.2023.3266417
[18]
Perron A, Politano O, Vignal V. Grain size, stress and surface roughness. Surf Interface Anal, 2008, 40(3/4), 518
[19]
Ono H, Koyanagi K I. Infrared absorption peak due to Ta=O bonds in Ta2O5 thin films. Appl Phys Lett, 2000, 77(10), 1431 doi: 10.1063/1.1290494
[20]
Zhao Y P, Wang Z X, Xu G W, et al. High performance indium-gallium-zinc oxide thin film transistor via interface engineering. Adv Funct Materials, 2020, 30(34), 2003285 doi: 10.1002/adfm.202003285
[21]
Lee S J, Jang Y, Kim H J, et al. Composition, microstructure, and electrical performance of sputtered SnO thin films for p-type oxide semiconductor. ACS Appl Mater Interfaces, 2018, 10(4), 3810 doi: 10.1021/acsami.7b17906
[22]
Bae K H, Shin M G, Hwang S H, et al. Electrical performance and stability improvement of p-channel SnO thin-film transistors using atomic-layer-deposited Al2O3 capping layer. IEEE Access, 2020, 8, 222410 doi: 10.1109/ACCESS.2020.3043780
[23]
Makuła P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra. J Phys Chem Lett, 2018, 9(23), 6814 doi: 10.1021/acs.jpclett.8b02892
[24]
Qiao L S, He G, Hao L, et al. Interface optimization of passivated Er2O3/Al2O3/InP MOS capacitors and modulation of leakage current conduction mechanism. IEEE Trans Electron Devices, 2021, 68(6), 2899 doi: 10.1109/TED.2021.3072928
[25]
Yan Y Y, Kilchytska V, Flandre D, et al. Investigation and optimization of traps properties in Al2O3/SiO2 dielectric stacks using conductance method. Solid State Electron, 2022, 194, 108347 doi: 10.1016/j.sse.2022.108347
[26]
Han S, Flewitt A J. The origin of the high off-state current in p-type Cu2O thin film transistors. IEEE Electron Device Lett, 2017, 38(10), 1394 doi: 10.1109/LED.2017.2748064
[27]
Chen C D, Chen Z H, Xu K J, et al. Thin-film transistors with the fringe effect and the correction factor for mobility extraction. IEEE Electron Device Lett, 2019, 40(6), 897 doi: 10.1109/LED.2019.2909282
[28]
Pei K, Chen M, Zhou Z W, et al. Overestimation of carrier mobility in organic thin film transistors due to unaccounted fringe currents. ACS Appl Electron Mater, 2019, 1(3), 379 doi: 10.1021/acsaelm.8b00097
[29]
Okamura K, Nikolova D, Mechau N, et al. Appropriate choice of channel ratio in thin-film transistors for the exact determination of field-effect mobility. Appl Phys Lett, 2009, 94(18), 183503 doi: 10.1063/1.3126956
[30]
Huang C H, Tang Y L, Yang T Y, et al. Atomically thin tin monoxide-based p-channel thin-film transistor and a low-power complementary inverter. ACS Appl Mater Interfaces, 2021, 13(44), 52783 doi: 10.1021/acsami.1c15990
[31]
Atlas User’s Manual: Device Simulation Software (Silvaco Inc. , Santa Clara, CA, 2019
[32]
Rajshekar K, Hsu H H, Kumar K U M, et al. Effect of plasma fluorination in p-type SnO TFTs: Experiments, modeling, and simulation. IEEE Trans Electron Devices, 2019, 66(3), 1314 doi: 10.1109/TED.2019.2895042
[33]
Shi Y P, Liu G X, Wu X M, et al. UV-ozone-assisted solution-processed high-k ZrO2 for MoS2 field-effect transistors. IEEE Trans Electron Devices, 2024, 71(4), 2789 doi: 10.1109/TED.2024.3365459
[34]
Qu Y X, Yang J, Li Y P, et al. Organic and inorganic passivation of p-type SnO thin-film transistors with different active layer thicknesses. Semicond Sci Technol, 2018, 33(7), 075001 doi: 10.1088/1361-6641/aac3c4
[35]
Park J S, Jeong J K, Chung H J, et al. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl Phys Lett, 2008, 92(7), 072104 doi: 10.1063/1.2838380
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 155 Times PDF downloads: 32 Times Cited by: 0 Times

    History

    Received: 01 January 2025 Revised: Online: Accepted Manuscript: 18 April 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yu Song, Runtong Guo, Ruohao Hong, Rui He, Xuming Zou, Benjamin Iñiguez, Denis Flandre, Lei Liao, Guoli Li. Improving Electrical Performance and Fringe Effect in p-Type SnOx Thin Film Transistors via Ta Incorporation[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25010031 ****Y Song, R T Guo, R H Hong, R He, X M Zou, B Iñiguez, D Flandre, L Liao, and G L Li, Improving Electrical Performance and Fringe Effect in p-Type SnOx Thin Film Transistors via Ta Incorporation[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25010031
      Citation:
      Yu Song, Runtong Guo, Ruohao Hong, Rui He, Xuming Zou, Benjamin Iñiguez, Denis Flandre, Lei Liao, Guoli Li. Improving Electrical Performance and Fringe Effect in p-Type SnOx Thin Film Transistors via Ta Incorporation[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25010031 ****
      Y Song, R T Guo, R H Hong, R He, X M Zou, B Iñiguez, D Flandre, L Liao, and G L Li, Improving Electrical Performance and Fringe Effect in p-Type SnOx Thin Film Transistors via Ta Incorporation[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25010031

      Improving Electrical Performance and Fringe Effect in p-Type SnOx Thin Film Transistors via Ta Incorporation

      DOI: 10.1088/1674-4926/25010031
      CSTR: 32376.14.1674-4926.25010031
      More Information
      • Yu Song received his BS degrees Electronic Information Engineering from Hunan University of Information Technology. Now, he is a PhD student at the School of Physics and Electronics, Hunan University under the supervision of Professor Guoli Li. His research focus on p-type metal oxide thin film transistors
      • Guoli Li, received the dual Ph.D. degrees in Electrical Engineering from Université catholique de Louvain (Belgium) and in Circuits and Systems from Hunan University in 2017. She currently serves as an associate Professor at the College of Semiconductors (College of Integrated Circuits), Hunan University. And her primary research focuses on thin-film transistors and device modeling
      • Corresponding author: liguoli_lily@hnu.edu.cn
      • Received Date: 2025-01-01
        Available Online: 2025-04-18

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return