Citation: |
Yu Song, Runtong Guo, Ruohao Hong, Rui He, Xuming Zou, Benjamin Iñiguez, Denis Flandre, Lei Liao, Guoli Li. Improving Electrical Performance and Fringe Effect in p-Type SnOx Thin Film Transistors via Ta Incorporation[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25010031
****
Y Song, R T Guo, R H Hong, R He, X M Zou, B Iñiguez, D Flandre, L Liao, and G L Li, Improving Electrical Performance and Fringe Effect in p-Type SnOx Thin Film Transistors via Ta Incorporation[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25010031
|
Improving Electrical Performance and Fringe Effect in p-Type SnOx Thin Film Transistors via Ta Incorporation
DOI: 10.1088/1674-4926/25010031
CSTR: 32376.14.1674-4926.25010031
More Information-
Abstract
In this work, the incorporation of Tantalum (Ta) into p-type metal-oxide (SnOx) semiconductor film is investigated to improve the electrical characteristics and suppress the fringe effect of thin film transistors (TFTs). The Ta-doped SnOx (SnOx:Ta) film is deposited by radio-frequency (RF) magnetron sputtering with a Sn:Ta (3at.%) target and thermally annealed at 270 °C for 30 mins. Here, we observe that the SnOx:Ta film presents increased crystallinity, reduced defect density (3.25 × 1012 cm−2eV−1), and widened bandgap (1.98 eV), in comparison with the undoped SnOx film. As a result, the SnOx:Ta TFTs exhibit a lower off-state current (Ioff), an improved on/off current ratio (2.17 × 104), a remarkably decreased subthreshold swing (SS) by 41%, and enhanced device stability. Additionally, by introducing Ta dopants, the fringe effect as well as the impact of channel width-to-length ratio (W/L) on electrical performances of the p-type oxide TFTs can be effectively suppressed. These results shall contribute to further exploration and development of p-type SnOx TFTs. -
References
[1] Wang Z W, Nayak P K, Caraveo-Frescas J A, et al. Recent developments in p-type oxide semiconductor materials and devices. Adv Mater, 2016, 28(20), 3831 doi: 10.1002/adma.201503080[2] Jeong H, Kong C S, Chang S W, et al. Temperature sensor made of amorphous indium–gallium–zinc oxide TFTs. IEEE Electron Device Lett, 2013, 34(12), 1569 doi: 10.1109/LED.2013.2286824[3] Hung M H, Chen C H, Lai Y C, et al. Ultra low voltage 1-V RFID tag implement in a-IGZO TFT technology on plastic. 2017 IEEE International Conference on RFID (RFID). Phoenix, AZ, USA. IEEE, 2017, 193[4] Zhang W, Liang R R, Liu L B, et al. Demonstration of α-InGaZnO TFT nonvolatile memory using TiAlO charge trapping layer. IEEE Trans Nanotechnol, 2018, 17(6), 1089 doi: 10.1109/TNANO.2018.2810885[5] Shiah Y S, Sim K, Shi Y H, et al. Mobility–stability trade-off in oxide thin-film transistors. Nat Electron, 2021, 4, 800 doi: 10.1038/s41928-021-00671-0[6] Nomura K, Kamiya T, Hosono H. Ambipolar oxide thin-film transistor. Adv Mater, 2011, 23(30), 3431 doi: 10.1002/adma.201101410[7] Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, et al. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano, 2013, 7(6), 5160 doi: 10.1021/nn400852r[8] Hu Y Q, Yao X L, Schlom D G, et al. First principles design of high hole mobility p-type Sn−O−X ternary oxides: Valence orbital engineering of Sn2+ in Sn2+−O−X by selection of appropriate elements X. Chem Mater, 2021, 33(1), 212 doi: 10.1021/acs.chemmater.0c03495[9] Hsu S M, Yang C E, Lu M H, et al. Mobility enhancement in P-type SnO thin-film transistors via Ni incorporation by co-sputtering. IEEE Electron Device Lett, 2022, 43(2), 228 doi: 10.1109/LED.2021.3136966[10] Qin L, Yuan S G, Chen Z Q, et al. Solution-processed transparent p-type orthorhombic K doped SnO films and their application in a phototransistor. Nanoscale, 2022, 14(37), 13763 doi: 10.1039/D2NR03785H[11] Zhang Z F, Guo Y Z, Robertson J. P-type semiconduction in oxides with cation lone pairs. Chem Mater, 2022, 34(2), 643 doi: 10.1021/acs.chemmater.1c03323[12] Hu Y Q, Hwang J, Lee Y, et al. First principles calculations of intrinsic mobilities in tin-based oxide semiconductors SnO, SnO2, and Ta2SnO6. J Appl Phys, 2019, 126(18), 185701 doi: 10.1063/1.5109265[13] Hu Y Q, Schlom D, Datta S, et al. Amorphous Ta2SnO6: A hole-dopable p-type oxide. Appl Surf Sci, 2023, 613, 155981 doi: 10.1016/j.apsusc.2022.155981[14] Barone M, Foody M, Hu Y Q, et al. Growth of Ta2SnO6 films, a candidate wide-band-gap p-type oxide. J Phys Chem C, 2022, 126(7), 3764 doi: 10.1021/acs.jpcc.1c10382[15] Huang A P, Chu P K. Crystallization improvement of Ta2O5 thin films by the addition of water vapor. J Cryst Growth, 2005, 274(1/2), 73[16] Huang A P, Xu S L, Zhu M K, et al. Crystallization control of sputtered Ta2O5 thin films by substrate bias. Appl Phys Lett, 2003, 83(16), 3278 doi: 10.1063/1.1610247[17] Zhou Y Y, Song Y, Hong R H, et al. Electrical evolution of p-type SnOx film and transistor deposited by RF magnetron sputtering. IEEE Trans Electron Devices, 2023, 70(6), 3100 doi: 10.1109/TED.2023.3266417[18] Perron A, Politano O, Vignal V. Grain size, stress and surface roughness. Surf Interface Anal, 2008, 40(3/4), 518[19] Ono H, Koyanagi K I. Infrared absorption peak due to Ta=O bonds in Ta2O5 thin films. Appl Phys Lett, 2000, 77(10), 1431 doi: 10.1063/1.1290494[20] Zhao Y P, Wang Z X, Xu G W, et al. High performance indium-gallium-zinc oxide thin film transistor via interface engineering. Adv Funct Materials, 2020, 30(34), 2003285 doi: 10.1002/adfm.202003285[21] Lee S J, Jang Y, Kim H J, et al. Composition, microstructure, and electrical performance of sputtered SnO thin films for p-type oxide semiconductor. ACS Appl Mater Interfaces, 2018, 10(4), 3810 doi: 10.1021/acsami.7b17906[22] Bae K H, Shin M G, Hwang S H, et al. Electrical performance and stability improvement of p-channel SnO thin-film transistors using atomic-layer-deposited Al2O3 capping layer. IEEE Access, 2020, 8, 222410 doi: 10.1109/ACCESS.2020.3043780[23] Makuła P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra. J Phys Chem Lett, 2018, 9(23), 6814 doi: 10.1021/acs.jpclett.8b02892[24] Qiao L S, He G, Hao L, et al. Interface optimization of passivated Er2O3/Al2O3/InP MOS capacitors and modulation of leakage current conduction mechanism. IEEE Trans Electron Devices, 2021, 68(6), 2899 doi: 10.1109/TED.2021.3072928[25] Yan Y Y, Kilchytska V, Flandre D, et al. Investigation and optimization of traps properties in Al2O3/SiO2 dielectric stacks using conductance method. Solid State Electron, 2022, 194, 108347 doi: 10.1016/j.sse.2022.108347[26] Han S, Flewitt A J. The origin of the high off-state current in p-type Cu2O thin film transistors. IEEE Electron Device Lett, 2017, 38(10), 1394 doi: 10.1109/LED.2017.2748064[27] Chen C D, Chen Z H, Xu K J, et al. Thin-film transistors with the fringe effect and the correction factor for mobility extraction. IEEE Electron Device Lett, 2019, 40(6), 897 doi: 10.1109/LED.2019.2909282[28] Pei K, Chen M, Zhou Z W, et al. Overestimation of carrier mobility in organic thin film transistors due to unaccounted fringe currents. ACS Appl Electron Mater, 2019, 1(3), 379 doi: 10.1021/acsaelm.8b00097[29] Okamura K, Nikolova D, Mechau N, et al. Appropriate choice of channel ratio in thin-film transistors for the exact determination of field-effect mobility. Appl Phys Lett, 2009, 94(18), 183503 doi: 10.1063/1.3126956[30] Huang C H, Tang Y L, Yang T Y, et al. Atomically thin tin monoxide-based p-channel thin-film transistor and a low-power complementary inverter. ACS Appl Mater Interfaces, 2021, 13(44), 52783 doi: 10.1021/acsami.1c15990[31] Atlas User’s Manual: Device Simulation Software (Silvaco Inc. , Santa Clara, CA, 2019[32] Rajshekar K, Hsu H H, Kumar K U M, et al. Effect of plasma fluorination in p-type SnO TFTs: Experiments, modeling, and simulation. IEEE Trans Electron Devices, 2019, 66(3), 1314 doi: 10.1109/TED.2019.2895042[33] Shi Y P, Liu G X, Wu X M, et al. UV-ozone-assisted solution-processed high-k ZrO2 for MoS2 field-effect transistors. IEEE Trans Electron Devices, 2024, 71(4), 2789 doi: 10.1109/TED.2024.3365459[34] Qu Y X, Yang J, Li Y P, et al. Organic and inorganic passivation of p-type SnO thin-film transistors with different active layer thicknesses. Semicond Sci Technol, 2018, 33(7), 075001 doi: 10.1088/1361-6641/aac3c4[35] Park J S, Jeong J K, Chung H J, et al. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl Phys Lett, 2008, 92(7), 072104 doi: 10.1063/1.2838380 -
Proportional views