Citation: |
Lifeng Wu, La Li, Guozhen Shen. Self-assembled flexible Ti3C2Tx MXene-based thermally chargeable supercapacitor[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25030009
****
L F Wu, L Li, and G Z Shen, Self-assembled flexible Ti3C2Tx MXene-based thermally chargeable supercapacitor[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25030009
|
Self-assembled flexible Ti3C2Tx MXene-based thermally chargeable supercapacitor
DOI: 10.1088/1674-4926/25030009
CSTR: 32376.14.1674-4926.25030009
More Information-
Abstract
Thermally chargeable supercapacitors (TCSCs) have unique advantages in the collection, conversion, and storage of thermal energy, contributing to the development of new strategies for thermal energy utilization. 2D MXene materials are predicted to be highly promising new thermoelectric materials. Here, we report a self-assembled flexible Ti3C2Tx MXene-based TCSC device, using prepared Ti3C2Tx MXene as the capacitor electrode and a NaClO4/PEO gel as the electrolyte. We also explore the working mechanism of the TCSCs. The fabricated Ti3C2Tx-based TCSCs exhibit an excellent Seebeck coefficient of 11.8 mV∙K−1 on average and maintain good cycling stability under various temperature differences. Demonstrations of multiple practical applications show that Ti3C2Tx MXene-based TCSC devices are excellent candidates for self-powered integrated electronic devices. -
References
[1] Agnew D C. A global timekeeping problem postponed by global warming. Nature, 2024, 628(8007), 333[2] Yadav A, Samykano M, Pandey A K, et al. Thermal characterization of shape-stable phase change material for efficient thermal energy storage and electric to thermal energy conversion. J Energy Storage, 2024, 103, 114368 doi: 10.1016/j.est.2024.114368[3] Zeng Q X, Luo Y L, Zhang X F, et al. A bistable triboelectric nanogenerator for low-grade thermal energy harvesting and solar thermal energy conversion. Small, 2023, 19(34), e2301952 doi: 10.1002/smll.202301952[4] Fan S H. Thermal photonics and energy applications. Joule, 2017, 1(2), 264[5] Sifnaios I, Sneum D M, Jensen A R, et al. The impact of large-scale thermal energy storage in the energy system. Appl Energy, 2023, 349, 121663[6] Adams M, Buckley C E, Busch M, et al. Hydride-based thermal energy storage. Prog Energy, 2022, 4(3), 032008 doi: 10.1088/2516-1083/ac72ea[7] Saher S, Johnston S, Esther-Kelvin R, et al. Trimodal thermal energy storage material for renewable energy applications. Nature, 2024, 636(8043), 622 doi: 10.1038/s41586-024-08214-1[8] Christensen T B K, Lund H, Sorknæs P. The role of thermal energy storages in future smart energy systems. Energy, 2024, 313, 133948 doi: 10.1016/j.energy.2024.133948[9] Du Z J, Li L, Shen G Z. Proton-conducting hydrogel electrolytes with tight contact to binder-free MXene electrodes for high-performance thermally chargeable supercapacitor. Carbon Energy, 2024, 6(11), e562[10] Luo D, Liu Z R, Cao J, et al. Performance investigation and optimization of an L-type thermoelectric generator. Energy, 2024, 307, 132768[11] Miao L, Zhu S J, Liu C Y, et al. Comfortable wearable thermoelectric generator with high output power. Nat Commun, 2024, 15(1), 8516[12] Huo H L, Xuan Y M, Meng T T. Enhancing thermoelectric conversion efficiency of hydrogel-based supercapacitors by the three-dimensional ion channels hydration. J Energy Storage, 2024, 80, 110437[13] Chen Z M, Du Z J, Li L, et al. High seebeck coefficient thermally chargeable supercapacitor with synergistic effect of multichannel ionogel electrolyte and Ti3C2T x MXene-based composite electrode. Energy Environ Mater, 2024, 7(6), e12756[14] He S J, Ren H L, Chen Y Y, et al. Full-device stretchable supercapacitors with superior thermal and self-healing stability based on recyclable polymeric eutectogels. J Energy Storage, 2023, 72, 108619[15] Han Z W, Cui J X, Wang J, et al. Ammonium-ion thermal charging supercapacitors for low-grade heat conversion and storage. Chem Eng J, 2024, 499, 156415[16] Snyder G J, Pereyra A, Gurunathan R. Effective mass from seebeck coefficient. Adv Funct Materials, 2022, 32(20), 2112772[17] Lou R, Bai L X, Zhang W, et al. Carbonized flowery carbon derived from lignin for efficient heat to current conversion of low-grade heat. Ind Crops Prod, 2023, 204, 117376[18] Du Z J, Liu W J, Liu J H, et al. A thermally chargeable supercapacitor based on the g-C3N4-doped PAMPS/PAA hydrogel solid electrolyte and 2D MOF@Ti3C2T x MXene heterostructure composite electrode. Adv Materials Inter, 2023, 10(17), 2300266[19] Xu X H, Li L, Liu W J, et al. Thermally chargeable supercapacitor with 3D Ti3C2T x MXene hollow sphere based freestanding electrodes. Adv Materials Inter, 2022, 9(24), 2201165[20] Jhon Y I, Koo J, Anasori B, et al. 2D materials: metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv Mater, 2017, 29, 201770292[21] Zhang C J, Kremer M P, Seral-Ascaso A, et al. Microelectronics: Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Materials, 2018, 28(9), 1870059[22] Gogotsi Y. The future of MXenes. Chem Mater, 2023, 35(21), 8767[23] Park T, Cho K, Kim S. Thin-film thermoelectric generators comprising molybdenum-based MXenes pn modules. Adv Mater Technol, 2021, 6(11), 2100590[24] Wang Z W, Chen M R, Cao Z N, et al. MXene nanosheet/organics superlattice for flexible thermoelectrics. ACS Appl Nano Mater, 2022, 5(11), 16872[25] Li L, Shen G Z. MXene based flexible photodetectors: Progress, challenges, and opportunities. Mater Horiz, 2023, 10(12), 5457[26] Hideshima S, Ogata Y, Takimoto D, et al. Vertically aligned MXene bioelectrode prepared by freeze-drying assisted electrophoretic deposition for sensitive electrochemical protein detection. Biosens Bioelectron, 2024, 250, 116036[27] Liu W J, Du Z J, Duan Z Y, et al. Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Nat Commun, 2024, 15(1), 5635[28] Shevchuk K, Sarycheva A, Shuck C E, et al. Raman spectroscopy characterization of 2D carbide and carbonitride MXenes. Chem Mater, 2023, 35(19), 8239[29] Han M K, Zhang D Z, Singh A, et al. Versatility of infrared properties of MXenes. Mater Today, 2023, 64, 31[30] Liu W J, Li L, Shen G Z. A Ti3C2T x MXene cathode and redox-active electrolyte based flexible Zn-ion microsupercapacitor for integrated pressure sensing application. Nanoscale, 2023, 15(6), 2624[31] Rems E, Hu Y J, Gogotsi Y, et al. Pivotal role of surface terminations in MXene thermodynamic stability. Chem Mater, 2024, 36(20), 10295[32] Han M K, Zhang D Z, Shuck C E, et al. Electrochemically modulated interaction of MXenes with microwaves. Nat Nanotechnol, 2023, 18(4), 373[33] Mentor J J, Torres R, Hallinan D T. The Soret effect in dry polymer electrolyte. Mol Syst Des Eng, 2020, 5(4), 856[34] Zhang Z Y, Liu C H, Fan S S. Power generation by thermal evaporation based on a button supercapacitor. ACS Appl Mater Interfaces, 2024, 16(8), 9980[35] Park K, Chang B Y, Hwang S. Correlation between tafel analysis and electrochemical impedance spectroscopy by prediction of amperometric response from EIS. ACS Omega, 2019, 4(21), 19307[36] Zeng Z H, Mei B A, Song G R, et al. Physical interpretation of the electrochemical impedance spectroscopy (EIS) characteristics for diffusion-controlled intercalation and surface-redox charge storage behaviors. J Energy Storage, 2024, 102, 114021[37] Xu S D, Horta S, Lawal A, et al. Interfacial bonding enhances thermoelectric cooling in 3D-printed materials. Science, 2025, 387(6736), 845[38] Jia B H, Wu D, Xie L, et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe. Science, 2024, 384(6691), 81[39] Cheng R, Ge H, Huang S, et al. Unraveling electronic origins for boosting thermoelectric performance of p-type (Bi, Sb)2 Te3. Sci Adv, 2024, 10, eadn9959[40] Tang Y X, Shu W J, Su B W, et al. Large effective mass and ultralow thermal conductivity lead to high thermoelectric performance in the high-entropy semiconductor MnGeAgBiTe4. J Mater Chem A, 2024, 12(9), 5464[41] Kim S L, Hsu J H, Yu C. Intercalated graphene oxide for flexible and practically large thermoelectric voltage generation and simultaneous energy storage. Nano Energy, 2018, 48, 582[42] Sun Y, Xue J J, Li Z W, et al. Hierarchical porous carbon derived from elm bark mucus for efficient energy storage and conversion. Mater Chem Phys, 2022, 277, 125450[43] Hu Q M, Li H, Chen X L, et al. Strong tough ionic organohydrogels with negative-thermopower via the synergy of coordination interaction and hofmeister effect. Adv Funct Materials, 2024, 34(46), 2406968[44] Li J, Chen S Y, Wu Z T, et al. Bacterial cellulose hydrogel-based wearable thermo-electrochemical cells for continuous body heat harvest. Nano Energy, 2023, 112, 108482[45] Li L, Liu W J, Jiang K, et al. In-situ annealed Ti3C2T x MXene based all-solid-state flexible Zn-ion hybrid micro supercapacitor array with enhanced stability. Nano Micro Lett, 2021, 13(1), 100 -
Proportional views