J. Semicond. >  In Press

ARTICLES

Self-assembled flexible Ti3C2Tx MXene-based thermally chargeable supercapacitor

Lifeng Wu, La Li and Guozhen Shen

+ Author Affiliations

 Corresponding author: La Li, lali@bit.edu.cn; Guozhen Shen, gzshen@bit.edu.cn

DOI: 10.1088/1674-4926/25030009CSTR: 32376.14.1674-4926.25030009

PDF

Turn off MathJax

Abstract: Thermally chargeable supercapacitors (TCSCs) have unique advantages in the collection, conversion, and storage of thermal energy, contributing to the development of new strategies for thermal energy utilization. 2D MXene materials are predicted to be highly promising new thermoelectric materials. Here, we report a self-assembled flexible Ti3C2Tx MXene-based TCSC device, using prepared Ti3C2Tx MXene as the capacitor electrode and a NaClO4/PEO gel as the electrolyte. We also explore the working mechanism of the TCSCs. The fabricated Ti3C2Tx-based TCSCs exhibit an excellent Seebeck coefficient of 11.8 mV∙K−1 on average and maintain good cycling stability under various temperature differences. Demonstrations of multiple practical applications show that Ti3C2Tx MXene-based TCSC devices are excellent candidates for self-powered integrated electronic devices.

Key words: Ti3C2Tx MXeneself-driven devicessoret effectthermally chargeable devices



[1]
Agnew D C. A global timekeeping problem postponed by global warming. Nature, 2024, 628(8007), 333 doi: 10.1038/s41586-024-07170-0
[2]
Yadav A, Samykano M, Pandey A K, et al. Thermal characterization of shape-stable phase change material for efficient thermal energy storage and electric to thermal energy conversion. J Energy Storage, 2024, 103, 114368 doi: 10.1016/j.est.2024.114368
[3]
Zeng Q X, Luo Y L, Zhang X F, et al. A bistable triboelectric nanogenerator for low-grade thermal energy harvesting and solar thermal energy conversion. Small, 2023, 19(34), e2301952 doi: 10.1002/smll.202301952
[4]
Fan S H. Thermal photonics and energy applications. Joule, 2017, 1(2), 264 doi: 10.1016/j.joule.2017.07.012
[5]
Sifnaios I, Sneum D M, Jensen A R, et al. The impact of large-scale thermal energy storage in the energy system. Appl Energy, 2023, 349, 121663 doi: 10.1016/j.apenergy.2023.121663
[6]
Adams M, Buckley C E, Busch M, et al. Hydride-based thermal energy storage. Prog Energy, 2022, 4(3), 032008 doi: 10.1088/2516-1083/ac72ea
[7]
Saher S, Johnston S, Esther-Kelvin R, et al. Trimodal thermal energy storage material for renewable energy applications. Nature, 2024, 636(8043), 622 doi: 10.1038/s41586-024-08214-1
[8]
Christensen T B K, Lund H, Sorknæs P. The role of thermal energy storages in future smart energy systems. Energy, 2024, 313, 133948 doi: 10.1016/j.energy.2024.133948
[9]
Du Z J, Li L, Shen G Z. Proton-conducting hydrogel electrolytes with tight contact to binder-free MXene electrodes for high-performance thermally chargeable supercapacitor. Carbon Energy, 2024, 6(11), e562 doi: 10.1002/cey2.562
[10]
Luo D, Liu Z R, Cao J, et al. Performance investigation and optimization of an L-type thermoelectric generator. Energy, 2024, 307, 132768 doi: 10.1016/j.energy.2024.132768
[11]
Miao L, Zhu S J, Liu C Y, et al. Comfortable wearable thermoelectric generator with high output power. Nat Commun, 2024, 15(1), 8516 doi: 10.1038/s41467-024-52841-1
[12]
Huo H L, Xuan Y M, Meng T T. Enhancing thermoelectric conversion efficiency of hydrogel-based supercapacitors by the three-dimensional ion channels hydration. J Energy Storage, 2024, 80, 110437 doi: 10.1016/j.est.2024.110437
[13]
Chen Z M, Du Z J, Li L, et al. High seebeck coefficient thermally chargeable supercapacitor with synergistic effect of multichannel ionogel electrolyte and Ti3C2Tx MXene-based composite electrode. Energy Environ Mater, 2024, 7(6), e12756 doi: 10.1002/eem2.12756
[14]
He S J, Ren H L, Chen Y Y, et al. Full-device stretchable supercapacitors with superior thermal and self-healing stability based on recyclable polymeric eutectogels. J Energy Storage, 2023, 72, 108619 doi: 10.1016/j.est.2023.108619
[15]
Han Z W, Cui J X, Wang J, et al. Ammonium-ion thermal charging supercapacitors for low-grade heat conversion and storage. Chem Eng J, 2024, 499, 156415 doi: 10.1016/j.cej.2024.156415
[16]
Snyder G J, Pereyra A, Gurunathan R. Effective mass from seebeck coefficient. Adv Funct Materials, 2022, 32(20), 2112772 doi: 10.1002/adfm.202112772
[17]
Lou R, Bai L X, Zhang W, et al. Carbonized flowery carbon derived from lignin for efficient heat to current conversion of low-grade heat. Ind Crops Prod, 2023, 204, 117376 doi: 10.1016/j.indcrop.2023.117376
[18]
Du Z J, Liu W J, Liu J H, et al. A thermally chargeable supercapacitor based on the g-C3N4-doped PAMPS/PAA hydrogel solid electrolyte and 2D MOF@Ti3C2Tx MXene heterostructure composite electrode. Adv Materials Inter, 2023, 10(17), 2300266 doi: 10.1002/admi.202300266
[19]
Xu X H, Li L, Liu W J, et al. Thermally chargeable supercapacitor with 3D Ti3C2Tx MXene hollow sphere based freestanding electrodes. Adv Materials Inter, 2022, 9(24), 2201165 doi: 10.1002/admi.202201165
[20]
Jhon Y I, Koo J, Anasori B, et al. 2D materials: metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv Mater, 2017, 29, 201770292 doi: 10.1002/adma.201770292
[21]
Zhang C J, Kremer M P, Seral-Ascaso A, et al. Microelectronics: Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Materials, 2018, 28(9), 1870059 doi: 10.1002/adfm.201870059
[22]
Gogotsi Y. The future of MXenes. Chem Mater, 2023, 35(21), 8767 doi: 10.1021/acs.chemmater.3c02491
[23]
Park T, Cho K, Kim S. Thin-film thermoelectric generators comprising molybdenum-based MXenes pn modules. Adv Mater Technol, 2021, 6(11), 2100590 doi: 10.1002/admt.202100590
[24]
Wang Z W, Chen M R, Cao Z N, et al. MXene nanosheet/organics superlattice for flexible thermoelectrics. ACS Appl Nano Mater, 2022, 5(11), 16872 doi: 10.1021/acsanm.2c03813
[25]
Li L, Liu W J, Jiang K, et al. In-situ annealed Ti3C2Tx MXene based all-solid-state flexible Zn-ion hybrid micro supercapacitor array with enhanced stability. Nano Micro Lett, 2021, 13(1), 100 doi: 10.1007/s40820-021-00634-2
[26]
Li L, Shen G Z. MXene based flexible photodetectors: Progress, challenges, and opportunities. Mater Horiz, 2023, 10(12), 5457 doi: 10.1039/D3MH01362F
[27]
Hideshima S, Ogata Y, Takimoto D, et al. Vertically aligned MXene bioelectrode prepared by freeze-drying assisted electrophoretic deposition for sensitive electrochemical protein detection. Biosens Bioelectron, 2024, 250, 116036 doi: 10.1016/j.bios.2024.116036
[28]
Liu W J, Du Z J, Duan Z Y, et al. Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Nat Commun, 2024, 15(1), 5635 doi: 10.1038/s41467-024-49907-5
[29]
Shevchuk K, Sarycheva A, Shuck C E, et al. Raman spectroscopy characterization of 2D carbide and carbonitride MXenes. Chem Mater, 2023, 35(19), 8239 doi: 10.1021/acs.chemmater.3c01742
[30]
Han M K, Zhang D Z, Singh A, et al. Versatility of infrared properties of MXenes. Mater Today, 2023, 64, 31 doi: 10.1016/j.mattod.2023.02.024
[31]
Liu W J, Li L, Shen G Z. A Ti3C2Tx MXene cathode and redox-active electrolyte based flexible Zn-ion microsupercapacitor for integrated pressure sensing application. Nanoscale, 2023, 15(6), 2624 doi: 10.1039/D2NR06626B
[32]
Rems E, Hu Y J, Gogotsi Y, et al. Pivotal role of surface terminations in MXene thermodynamic stability. Chem Mater, 2024, 36(20), 10295 doi: 10.1021/acs.chemmater.4c02274
[33]
Han M K, Zhang D Z, Shuck C E, et al. Electrochemically modulated interaction of MXenes with microwaves. Nat Nanotechnol, 2023, 18(4), 373 doi: 10.1038/s41565-022-01308-9
[34]
Mentor J J, Torres R, Hallinan D T. The Soret effect in dry polymer electrolyte. Mol Syst Des Eng, 2020, 5(4), 856 doi: 10.1039/C9ME00145J
[35]
Zhang Z Y, Liu C H, Fan S S. Power generation by thermal evaporation based on a button supercapacitor. ACS Appl Mater Interfaces, 2024, 16(8), 9980 doi: 10.1021/acsami.3c14433
[36]
Park K, Chang B Y, Hwang S. Correlation between tafel analysis and electrochemical impedance spectroscopy by prediction of amperometric response from EIS. ACS Omega, 2019, 4(21), 19307 doi: 10.1021/acsomega.9b02672
[37]
Zeng Z H, Mei B A, Song G R, et al. Physical interpretation of the electrochemical impedance spectroscopy (EIS) characteristics for diffusion-controlled intercalation and surface-redox charge storage behaviors. J Energy Storage, 2024, 102, 114021 doi: 10.1016/j.est.2024.114021
[38]
Xu S D, Horta S, Lawal A, et al. Interfacial bonding enhances thermoelectric cooling in 3D-printed materials. Science, 2025, 387(6736), 845 doi: 10.1126/science.ads0426
[39]
Jia B H, Wu D, Xie L, et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe. Science, 2024, 384(6691), 81 doi: 10.1126/science.adj8175
[40]
Cheng R, Ge H, Huang S, et al. Unraveling electronic origins for boosting thermoelectric performance of p-type (Bi, Sb)2 Te3. Sci Adv, 2024, 10, eadn9959 doi: 10.1126/sciadv.adn9959
[41]
Tang Y X, Shu W J, Su B W, et al. Large effective mass and ultralow thermal conductivity lead to high thermoelectric performance in the high-entropy semiconductor MnGeAgBiTe4. J Mater Chem A, 2024, 12(9), 5464 doi: 10.1039/D3TA07026C
[42]
Kim S L, Hsu J H, Yu C. Intercalated graphene oxide for flexible and practically large thermoelectric voltage generation and simultaneous energy storage. Nano Energy, 2018, 48, 582 doi: 10.1016/j.nanoen.2018.04.015
[43]
Sun Y, Xue J J, Li Z W, et al. Hierarchical porous carbon derived from elm bark mucus for efficient energy storage and conversion. Mater Chem Phys, 2022, 277, 125450 doi: 10.1016/j.matchemphys.2021.125450
[44]
Hu Q M, Li H, Chen X L, et al. Strong tough ionic organohydrogels with negative-thermopower via the synergy of coordination interaction and hofmeister effect. Adv Funct Materials, 2024, 34(46), 2406968 doi: 10.1002/adfm.202406968
[45]
Li J, Chen S Y, Wu Z T, et al. Bacterial cellulose hydrogel-based wearable thermo-electrochemical cells for continuous body heat harvest. Nano Energy, 2023, 112, 108482 doi: 10.1016/j.nanoen.2023.108482
Fig. 1.  (Color online) (a) SEM image of the prepared Ti3C2Tx MXene. (b) TEM image of the prepared Ti3C2Tx MXene. (c)−(g) The elemental mapping images obtained from SEM image showing the dispersion of Ti, C, O, and F elements in the prepared Ti3C2Tx MXene.

Fig. 2.  (Color online) (a) Schematic illustration of the mechanism of the Seebeck effect in the Ti3C2Tx-based TCSC devices. (b) Schematic illustration of the working mechanism of the Ti3C2Tx-based TCSC devices driven by a temperature gradient.

Fig. 3.  (Color online) (a) CV curves of the Ti3C2Tx-based TCSC devices at different scan rates varying from 10−1000 mV/s, ΔT = 0 °C. (b) CV curves of the Ti3C2Tx-based TCSC devices at different scan rates varying from 10−1000 mV/s, ΔT = 6.8 °C. (c) Compared CV curves of theTi3C2Tx-based TCSC devices with ΔT = 0 °C and ΔT = 6.8 °C. (d) Variation of specific capacitance with the scan rate (10 to 100 mV/s) under none temperature difference or ΔT = 6.8 °C between two electrodes. (e) Discharge curves of the Ti3C2Tx-based TCSC devices under none temperature difference or ΔT = 6.8 °C between two electrodes. (f) Nyquist plots of the Ti3C2Tx-based TCSC devices under none temperature difference and ΔT = 6.8 °C between two electrodes.

Fig. 4.  (Color online) (a) CV curves of the Ti3C2Tx-based TCSC devices under different temperature differences (ΔT = 4.3, 6.8, 9.4, 14.4, and 18 °C). (b) Nyquist plots of the Ti3C2Tx-based TCSC devices under different temperature differences (ΔT = 0, 2.4, 4.3, 6.8, and 9.4 °C). (c) The voltage output of the Ti3C2Tx-based TCSC devices under a load resistance of 100 kΩ at ΔT = 6.8°C. (d) Charging/discharging cycles of the Ti3C2Tx-based TCSC devices when applied periodic ΔT of 4.3, 6.8, 9.4, 14.4, and 18 °C. (e) The Seebeck coefficient under different temperature differences.

Table 1.   Comparison of Seebeck coefficients for recently reported electronic and ionic materials.

Thermoelectric material Type ΔT (K) Seebeck coefficient Reference
75%Bi0.5Sb1.5Te3-10%Bi-15%Sb2Te4 Electronic 120 258 μV∙K−1 37
Pb0.97Na0.03Te-2%MgTe-0.75%GeTe Electronic 600 286 μV∙K−1 38
p-type (Bi, Sb)2Te3 Electronic 375 232 μV∙K−1 39
(MnTe)0.5(AgBiTe2)0.5 Electronic 545 258 μV∙K−1 40
SGO Ionic 10.5 9 mV∙K−1 41
Hierarchical porous carbon Ionic 11.1 1.97 mV∙K−1 42
PVPy30-1.5 Ionic 58.5 3.69 mV∙K−1 43
BC Ionic 45 1.52 mV∙K−1 44
Ti3C2Tx MXene Ionic 9.4 11.8 mV∙K−1 This work
DownLoad: CSV
[1]
Agnew D C. A global timekeeping problem postponed by global warming. Nature, 2024, 628(8007), 333 doi: 10.1038/s41586-024-07170-0
[2]
Yadav A, Samykano M, Pandey A K, et al. Thermal characterization of shape-stable phase change material for efficient thermal energy storage and electric to thermal energy conversion. J Energy Storage, 2024, 103, 114368 doi: 10.1016/j.est.2024.114368
[3]
Zeng Q X, Luo Y L, Zhang X F, et al. A bistable triboelectric nanogenerator for low-grade thermal energy harvesting and solar thermal energy conversion. Small, 2023, 19(34), e2301952 doi: 10.1002/smll.202301952
[4]
Fan S H. Thermal photonics and energy applications. Joule, 2017, 1(2), 264 doi: 10.1016/j.joule.2017.07.012
[5]
Sifnaios I, Sneum D M, Jensen A R, et al. The impact of large-scale thermal energy storage in the energy system. Appl Energy, 2023, 349, 121663 doi: 10.1016/j.apenergy.2023.121663
[6]
Adams M, Buckley C E, Busch M, et al. Hydride-based thermal energy storage. Prog Energy, 2022, 4(3), 032008 doi: 10.1088/2516-1083/ac72ea
[7]
Saher S, Johnston S, Esther-Kelvin R, et al. Trimodal thermal energy storage material for renewable energy applications. Nature, 2024, 636(8043), 622 doi: 10.1038/s41586-024-08214-1
[8]
Christensen T B K, Lund H, Sorknæs P. The role of thermal energy storages in future smart energy systems. Energy, 2024, 313, 133948 doi: 10.1016/j.energy.2024.133948
[9]
Du Z J, Li L, Shen G Z. Proton-conducting hydrogel electrolytes with tight contact to binder-free MXene electrodes for high-performance thermally chargeable supercapacitor. Carbon Energy, 2024, 6(11), e562 doi: 10.1002/cey2.562
[10]
Luo D, Liu Z R, Cao J, et al. Performance investigation and optimization of an L-type thermoelectric generator. Energy, 2024, 307, 132768 doi: 10.1016/j.energy.2024.132768
[11]
Miao L, Zhu S J, Liu C Y, et al. Comfortable wearable thermoelectric generator with high output power. Nat Commun, 2024, 15(1), 8516 doi: 10.1038/s41467-024-52841-1
[12]
Huo H L, Xuan Y M, Meng T T. Enhancing thermoelectric conversion efficiency of hydrogel-based supercapacitors by the three-dimensional ion channels hydration. J Energy Storage, 2024, 80, 110437 doi: 10.1016/j.est.2024.110437
[13]
Chen Z M, Du Z J, Li L, et al. High seebeck coefficient thermally chargeable supercapacitor with synergistic effect of multichannel ionogel electrolyte and Ti3C2Tx MXene-based composite electrode. Energy Environ Mater, 2024, 7(6), e12756 doi: 10.1002/eem2.12756
[14]
He S J, Ren H L, Chen Y Y, et al. Full-device stretchable supercapacitors with superior thermal and self-healing stability based on recyclable polymeric eutectogels. J Energy Storage, 2023, 72, 108619 doi: 10.1016/j.est.2023.108619
[15]
Han Z W, Cui J X, Wang J, et al. Ammonium-ion thermal charging supercapacitors for low-grade heat conversion and storage. Chem Eng J, 2024, 499, 156415 doi: 10.1016/j.cej.2024.156415
[16]
Snyder G J, Pereyra A, Gurunathan R. Effective mass from seebeck coefficient. Adv Funct Materials, 2022, 32(20), 2112772 doi: 10.1002/adfm.202112772
[17]
Lou R, Bai L X, Zhang W, et al. Carbonized flowery carbon derived from lignin for efficient heat to current conversion of low-grade heat. Ind Crops Prod, 2023, 204, 117376 doi: 10.1016/j.indcrop.2023.117376
[18]
Du Z J, Liu W J, Liu J H, et al. A thermally chargeable supercapacitor based on the g-C3N4-doped PAMPS/PAA hydrogel solid electrolyte and 2D MOF@Ti3C2Tx MXene heterostructure composite electrode. Adv Materials Inter, 2023, 10(17), 2300266 doi: 10.1002/admi.202300266
[19]
Xu X H, Li L, Liu W J, et al. Thermally chargeable supercapacitor with 3D Ti3C2Tx MXene hollow sphere based freestanding electrodes. Adv Materials Inter, 2022, 9(24), 2201165 doi: 10.1002/admi.202201165
[20]
Jhon Y I, Koo J, Anasori B, et al. 2D materials: metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv Mater, 2017, 29, 201770292 doi: 10.1002/adma.201770292
[21]
Zhang C J, Kremer M P, Seral-Ascaso A, et al. Microelectronics: Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Materials, 2018, 28(9), 1870059 doi: 10.1002/adfm.201870059
[22]
Gogotsi Y. The future of MXenes. Chem Mater, 2023, 35(21), 8767 doi: 10.1021/acs.chemmater.3c02491
[23]
Park T, Cho K, Kim S. Thin-film thermoelectric generators comprising molybdenum-based MXenes pn modules. Adv Mater Technol, 2021, 6(11), 2100590 doi: 10.1002/admt.202100590
[24]
Wang Z W, Chen M R, Cao Z N, et al. MXene nanosheet/organics superlattice for flexible thermoelectrics. ACS Appl Nano Mater, 2022, 5(11), 16872 doi: 10.1021/acsanm.2c03813
[25]
Li L, Liu W J, Jiang K, et al. In-situ annealed Ti3C2Tx MXene based all-solid-state flexible Zn-ion hybrid micro supercapacitor array with enhanced stability. Nano Micro Lett, 2021, 13(1), 100 doi: 10.1007/s40820-021-00634-2
[26]
Li L, Shen G Z. MXene based flexible photodetectors: Progress, challenges, and opportunities. Mater Horiz, 2023, 10(12), 5457 doi: 10.1039/D3MH01362F
[27]
Hideshima S, Ogata Y, Takimoto D, et al. Vertically aligned MXene bioelectrode prepared by freeze-drying assisted electrophoretic deposition for sensitive electrochemical protein detection. Biosens Bioelectron, 2024, 250, 116036 doi: 10.1016/j.bios.2024.116036
[28]
Liu W J, Du Z J, Duan Z Y, et al. Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Nat Commun, 2024, 15(1), 5635 doi: 10.1038/s41467-024-49907-5
[29]
Shevchuk K, Sarycheva A, Shuck C E, et al. Raman spectroscopy characterization of 2D carbide and carbonitride MXenes. Chem Mater, 2023, 35(19), 8239 doi: 10.1021/acs.chemmater.3c01742
[30]
Han M K, Zhang D Z, Singh A, et al. Versatility of infrared properties of MXenes. Mater Today, 2023, 64, 31 doi: 10.1016/j.mattod.2023.02.024
[31]
Liu W J, Li L, Shen G Z. A Ti3C2Tx MXene cathode and redox-active electrolyte based flexible Zn-ion microsupercapacitor for integrated pressure sensing application. Nanoscale, 2023, 15(6), 2624 doi: 10.1039/D2NR06626B
[32]
Rems E, Hu Y J, Gogotsi Y, et al. Pivotal role of surface terminations in MXene thermodynamic stability. Chem Mater, 2024, 36(20), 10295 doi: 10.1021/acs.chemmater.4c02274
[33]
Han M K, Zhang D Z, Shuck C E, et al. Electrochemically modulated interaction of MXenes with microwaves. Nat Nanotechnol, 2023, 18(4), 373 doi: 10.1038/s41565-022-01308-9
[34]
Mentor J J, Torres R, Hallinan D T. The Soret effect in dry polymer electrolyte. Mol Syst Des Eng, 2020, 5(4), 856 doi: 10.1039/C9ME00145J
[35]
Zhang Z Y, Liu C H, Fan S S. Power generation by thermal evaporation based on a button supercapacitor. ACS Appl Mater Interfaces, 2024, 16(8), 9980 doi: 10.1021/acsami.3c14433
[36]
Park K, Chang B Y, Hwang S. Correlation between tafel analysis and electrochemical impedance spectroscopy by prediction of amperometric response from EIS. ACS Omega, 2019, 4(21), 19307 doi: 10.1021/acsomega.9b02672
[37]
Zeng Z H, Mei B A, Song G R, et al. Physical interpretation of the electrochemical impedance spectroscopy (EIS) characteristics for diffusion-controlled intercalation and surface-redox charge storage behaviors. J Energy Storage, 2024, 102, 114021 doi: 10.1016/j.est.2024.114021
[38]
Xu S D, Horta S, Lawal A, et al. Interfacial bonding enhances thermoelectric cooling in 3D-printed materials. Science, 2025, 387(6736), 845 doi: 10.1126/science.ads0426
[39]
Jia B H, Wu D, Xie L, et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe. Science, 2024, 384(6691), 81 doi: 10.1126/science.adj8175
[40]
Cheng R, Ge H, Huang S, et al. Unraveling electronic origins for boosting thermoelectric performance of p-type (Bi, Sb)2 Te3. Sci Adv, 2024, 10, eadn9959 doi: 10.1126/sciadv.adn9959
[41]
Tang Y X, Shu W J, Su B W, et al. Large effective mass and ultralow thermal conductivity lead to high thermoelectric performance in the high-entropy semiconductor MnGeAgBiTe4. J Mater Chem A, 2024, 12(9), 5464 doi: 10.1039/D3TA07026C
[42]
Kim S L, Hsu J H, Yu C. Intercalated graphene oxide for flexible and practically large thermoelectric voltage generation and simultaneous energy storage. Nano Energy, 2018, 48, 582 doi: 10.1016/j.nanoen.2018.04.015
[43]
Sun Y, Xue J J, Li Z W, et al. Hierarchical porous carbon derived from elm bark mucus for efficient energy storage and conversion. Mater Chem Phys, 2022, 277, 125450 doi: 10.1016/j.matchemphys.2021.125450
[44]
Hu Q M, Li H, Chen X L, et al. Strong tough ionic organohydrogels with negative-thermopower via the synergy of coordination interaction and hofmeister effect. Adv Funct Materials, 2024, 34(46), 2406968 doi: 10.1002/adfm.202406968
[45]
Li J, Chen S Y, Wu Z T, et al. Bacterial cellulose hydrogel-based wearable thermo-electrochemical cells for continuous body heat harvest. Nano Energy, 2023, 112, 108482 doi: 10.1016/j.nanoen.2023.108482
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 142 Times PDF downloads: 13 Times Cited by: 0 Times

    History

    Received: 07 March 2025 Revised: 20 March 2025 Online: Accepted Manuscript: 02 April 2025Uncorrected proof: 19 May 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lifeng Wu, La Li, Guozhen Shen. Self-assembled flexible Ti3C2Tx MXene-based thermally chargeable supercapacitor[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25030009 ****L F Wu, L Li, and G Z Shen, Self-assembled flexible Ti3C2Tx MXene-based thermally chargeable supercapacitor[J]. J. Semicond., 2025, 46(9), 092601 doi: 10.1088/1674-4926/25030009
      Citation:
      Lifeng Wu, La Li, Guozhen Shen. Self-assembled flexible Ti3C2Tx MXene-based thermally chargeable supercapacitor[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25030009 ****
      L F Wu, L Li, and G Z Shen, Self-assembled flexible Ti3C2Tx MXene-based thermally chargeable supercapacitor[J]. J. Semicond., 2025, 46(9), 092601 doi: 10.1088/1674-4926/25030009

      Self-assembled flexible Ti3C2Tx MXene-based thermally chargeable supercapacitor

      DOI: 10.1088/1674-4926/25030009
      CSTR: 32376.14.1674-4926.25030009
      More Information
      • Lifeng Wu is a grade 2021 undergraduate student at the school of integrated circuits and electronics, Beijing Institute of Technology, China. His research interests mainly focus on 2D MXene based flexible electronics and eye-wearable electronics
      • La Li received her Ph.D. degree in applied physics at Jilin University in 2018. She is currently an associate professor at the school of integrated circuits and electronics, Beijing Institute of Technology, China. Her research interests mainly focus on 2D MXene based flexible electronics and eye-wearable electronics
      • Guozhen Shen received his PhD degree in Chemistry from the University of Science and Technology of China. He is currently a professor at the School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), and the director of the Institute of Flexible Electronics and Intelligent Manufacturing. Before joining BIT, he worked at Hanyang University (Korea), National Institute for Materials Science (Japan), University of Southern California (US), and Huazhong University of Science and Technology (China), the Institute of Semiconductors, CAS (China). His current research focuses on flexible electronic devices for artificial intelligence and healthcare monitoring
      • Corresponding author: lali@bit.edu.cngzshen@bit.edu.cn
      • Received Date: 2025-03-07
      • Revised Date: 2025-03-20
      • Available Online: 2025-04-02

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return