J. Semicond. >  In Press

RESEARCH HIGHLIGHTS

Manipulation strategy of cation inhomogeneity in perovskite solar cells

Jiale Sun1, Xuxia Shai1, , Weitao chen1, Shenchao Li1, Jinlan He1, Xinxing Liu2, Dongmei He2, Yue Yu2 and Jiangzhao Chen2,

+ Author Affiliations

 Corresponding author: Xuxia Shai, xuxiashai@kust.edu.cn; Jiangzhao Chen, jzchen@kust.edu.cn

DOI: 10.1088/1674-4926/25030012CSTR: 32376.14.1674-4926.25030012

PDF

Turn off MathJax



[1]
Zhang Z L, Feng Y S, Ding J K, et al. Rationally designed universal passivator for high-performance single-junction and tandem perovskite solar cells. Nat Commun, 2025, 16, 753 doi: 10.1038/s41467-025-56068-6
[2]
Ding Z J, Yang H, Li S S, et al. A-site cation segregation in alloyed perovskite solar cells. ACS Photonics, 2024, 11(12), 5061 doi: 10.1021/acsphotonics.4c01330
[3]
Liu L, Lu J Z, Wang H, et al. A-site phase segregation in mixed cation perovskite. Mater Rep: Energy, 2021, 1, 100064 doi: 10.1016/j.matre.2021.100064
[4]
Yan K Y, Long M Z, Zhang T K, et al. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J Am Chem Soc, 2015, 137, 4460 doi: 10.1021/jacs.5b00321
[5]
Quintero-Bermudez R, Gold-Parker A, Proppe A H, et al. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat Mater, 2018, 17, 900 doi: 10.1038/s41563-018-0154-x
[6]
Zhang X, Munir R, Xu Z, et al. Phase transition control for high performance ruddlesden–popper perovskite solar cells. Adv Mater, 2018, 30, 1707166 doi: 10.1002/adma.201707166
[7]
Dang H X, Wang K, Ghasemi M, et al. Multi-cation synergy suppresses phase segregation in mixed-halide perovskites. Joule, 2019, 3, 1746 doi: 10.1016/j.joule.2019.05.016
[8]
Zhu C, Niu X, Fu Y, et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat Commun, 2019, 10, 815 doi: 10.1038/s41467-019-08507-4
[9]
Li N X, Luo Y Q, Chen Z H, et al. Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors. Joule, 2020, 4, 1743 doi: 10.1016/j.joule.2020.06.005
[10]
Li J W, Dong Q S, Li N, et al. Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv Energy Mater, 2017, 7, 1602922 doi: 10.1002/aenm.201602922
[11]
Wang K, Subhani W S, Wang Y L, et al. Metal cation in efficient perovskite solar cells: progress and perspective. Adv Mater, 2019, 31, 1902037 doi: 10.1002/adma.201902037
[12]
Mundt L E, Zhang F, Palmstrom A F, et al. Mixing matters: nanoscale heterogeneity and stability in metal halide perovskite solar cells. ACS Energy Lett, 2022, 7, 471 doi: 10.1021/acsenergylett.1c02338
[13]
Zhou Q, Yang Y Y, He D M, et al. Simultaneous suppression of multilayer ion migration via molecular complexation strategy toward high-performance regular perovskite solar cells. Angew Chem Int Ed, 2025, 64, e202416605 doi: 10.1002/anie.202416605
[14]
Liu B B, Ren X D, Li R, et al. Chen. Stabilizing top interface by molecular locking strategy with polydentate chelating biomaterials toward efficient and stable perovskite solar cells in ambient air. Adv Mater, 2024, 36, 2312679 doi: 10.1002/adma.202312679
[15]
Cao J, Tao S X, Bobbert P A, et al. Interstitial occupancy by extrinsic alkali cation in perovskites and its impact on ion migration. Adv Mater, 2018, 30, 1707350 doi: 10.1002/adma.201707350
[16]
Lu H Z, Liu Y H, Ahlawat P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science, 2020, 370, b8985 doi: 10.1126/science.abb8985
[17]
Huang Z J, Bai Y, Huang X D, et al. Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature, 2023, 623, 531 doi: 10.1038/s41586-023-06637-w
[18]
Bai Y, Huang Z J, Zhang X, et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science, 2022, 378, 747 doi: 10.1126/science.abn3148
[19]
Liu S W, Guan X Y, Xiao W S, et al. Effective passivation with size-matched Alkyldiammonium iodide for high-performance inverted perovskite solar cells. Adv Funct Mater, 2022, 32, 2205009 doi: 10.1002/adfm.202205009
[20]
Liang Z, Zhang Y, Xu H F, et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 2023, 624, 557 doi: 10.1038/s41586-023-06784-0
Fig. 1.  (Color online) (a) Time evolution of crystallization of as-cast MCPs films[7]. (b) Cross sectional TEM image of the (FAPbI3)0.85(MAPbBr3)0.15 device and the diffraction patterns at different probing depths, the PL depth profile of confocal fluorescence microscope[8]. (c) Illustrations of the alloyed perovskite with homogeneous and segregated cation distribution, and the origin of cation segregation during crystallization and device operation.

Fig. 2.  (Color online) (a) Schematic illustration of cation segregation mechanisms and mitigating strategies. (b) MCPs devices with different annealing conditions used for the absorber layer[12]. (c) 2D TOF-SIMS mapping of perovskite films fabricated by reference and modified precursor solutions, as well as the corresponding intensity distribution[18]. (d) High-angle annular dark-field TEM images for the reference and PSP-treated sample[20].

[1]
Zhang Z L, Feng Y S, Ding J K, et al. Rationally designed universal passivator for high-performance single-junction and tandem perovskite solar cells. Nat Commun, 2025, 16, 753 doi: 10.1038/s41467-025-56068-6
[2]
Ding Z J, Yang H, Li S S, et al. A-site cation segregation in alloyed perovskite solar cells. ACS Photonics, 2024, 11(12), 5061 doi: 10.1021/acsphotonics.4c01330
[3]
Liu L, Lu J Z, Wang H, et al. A-site phase segregation in mixed cation perovskite. Mater Rep: Energy, 2021, 1, 100064 doi: 10.1016/j.matre.2021.100064
[4]
Yan K Y, Long M Z, Zhang T K, et al. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J Am Chem Soc, 2015, 137, 4460 doi: 10.1021/jacs.5b00321
[5]
Quintero-Bermudez R, Gold-Parker A, Proppe A H, et al. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat Mater, 2018, 17, 900 doi: 10.1038/s41563-018-0154-x
[6]
Zhang X, Munir R, Xu Z, et al. Phase transition control for high performance ruddlesden–popper perovskite solar cells. Adv Mater, 2018, 30, 1707166 doi: 10.1002/adma.201707166
[7]
Dang H X, Wang K, Ghasemi M, et al. Multi-cation synergy suppresses phase segregation in mixed-halide perovskites. Joule, 2019, 3, 1746 doi: 10.1016/j.joule.2019.05.016
[8]
Zhu C, Niu X, Fu Y, et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat Commun, 2019, 10, 815 doi: 10.1038/s41467-019-08507-4
[9]
Li N X, Luo Y Q, Chen Z H, et al. Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors. Joule, 2020, 4, 1743 doi: 10.1016/j.joule.2020.06.005
[10]
Li J W, Dong Q S, Li N, et al. Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv Energy Mater, 2017, 7, 1602922 doi: 10.1002/aenm.201602922
[11]
Wang K, Subhani W S, Wang Y L, et al. Metal cation in efficient perovskite solar cells: progress and perspective. Adv Mater, 2019, 31, 1902037 doi: 10.1002/adma.201902037
[12]
Mundt L E, Zhang F, Palmstrom A F, et al. Mixing matters: nanoscale heterogeneity and stability in metal halide perovskite solar cells. ACS Energy Lett, 2022, 7, 471 doi: 10.1021/acsenergylett.1c02338
[13]
Zhou Q, Yang Y Y, He D M, et al. Simultaneous suppression of multilayer ion migration via molecular complexation strategy toward high-performance regular perovskite solar cells. Angew Chem Int Ed, 2025, 64, e202416605 doi: 10.1002/anie.202416605
[14]
Liu B B, Ren X D, Li R, et al. Chen. Stabilizing top interface by molecular locking strategy with polydentate chelating biomaterials toward efficient and stable perovskite solar cells in ambient air. Adv Mater, 2024, 36, 2312679 doi: 10.1002/adma.202312679
[15]
Cao J, Tao S X, Bobbert P A, et al. Interstitial occupancy by extrinsic alkali cation in perovskites and its impact on ion migration. Adv Mater, 2018, 30, 1707350 doi: 10.1002/adma.201707350
[16]
Lu H Z, Liu Y H, Ahlawat P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science, 2020, 370, b8985 doi: 10.1126/science.abb8985
[17]
Huang Z J, Bai Y, Huang X D, et al. Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature, 2023, 623, 531 doi: 10.1038/s41586-023-06637-w
[18]
Bai Y, Huang Z J, Zhang X, et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science, 2022, 378, 747 doi: 10.1126/science.abn3148
[19]
Liu S W, Guan X Y, Xiao W S, et al. Effective passivation with size-matched Alkyldiammonium iodide for high-performance inverted perovskite solar cells. Adv Funct Mater, 2022, 32, 2205009 doi: 10.1002/adfm.202205009
[20]
Liang Z, Zhang Y, Xu H F, et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 2023, 624, 557 doi: 10.1038/s41586-023-06784-0
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 66 Times PDF downloads: 9 Times Cited by: 0 Times

    History

    Received: 12 March 2025 Revised: Online: Accepted Manuscript: 16 April 2025Uncorrected proof: 27 April 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiale Sun, Xuxia Shai, Weitao chen, Shenchao Li, Jinlan He, Xinxing Liu, Dongmei He, Yue Yu, Jiangzhao Chen. Manipulation strategy of cation inhomogeneity in perovskite solar cells[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25030012 ****J L Sun, X X Shai, W T chen, S C Li, J L He, X X Liu, D M He, Y Yu, and J Z Chen, Manipulation strategy of cation inhomogeneity in perovskite solar cells[J]. J. Semicond., 2025, 46(5), 050202 doi: 10.1088/1674-4926/25030012
      Citation:
      Jiale Sun, Xuxia Shai, Weitao chen, Shenchao Li, Jinlan He, Xinxing Liu, Dongmei He, Yue Yu, Jiangzhao Chen. Manipulation strategy of cation inhomogeneity in perovskite solar cells[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25030012 ****
      J L Sun, X X Shai, W T chen, S C Li, J L He, X X Liu, D M He, Y Yu, and J Z Chen, Manipulation strategy of cation inhomogeneity in perovskite solar cells[J]. J. Semicond., 2025, 46(5), 050202 doi: 10.1088/1674-4926/25030012

      Manipulation strategy of cation inhomogeneity in perovskite solar cells

      DOI: 10.1088/1674-4926/25030012
      CSTR: 32376.14.1674-4926.25030012
      More Information
      • Jiale Sun got his bachelor's degree from Kunming University of Science and Technology in 2022. Now he is a master student in the Kunming University of Science and Technology. His research focuses on organic–inorganic hybrid perovskite solar cells
      • Xuxia Shai is an associate professor at Institute of Physical and Engineering Science/Faculty of Science, Kunming University of Science and Technology. She received her Ph.D. from Huazhong University of Science and Technology. Her current research focuses on perovskite solar cells
      • Jiangzhao Chen is a professor at Faculty of Materials Science and Engineering in Kunming University of Science and Technology. He received his B.S. and Ph.D. degrees from Northeast Forestry University in 2011 and from Huazhong University of Science and Technology in 2016, respectively. From 2016 to 2019, he worked as a postdoctoral researcher at Sungkyunkwan University and at the University of Hong Kong, respectively. From 2019 to 2023, he worked as a professor at Chongqing University. His current research interests focus on perovskite solar cells
      • Corresponding author: xuxiashai@kust.edu.cnjzchen@kust.edu.cn
      • Received Date: 2025-03-12
        Available Online: 2025-04-16

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return