Citation: |
Haifeng Chen, Yuduo Zhang, Xiexin Sun, Jingguo Zong, Qin Lu, Yifan Jia, Zhenfu Feng, Zhan Wang, Lijun Li, Xiangtai Liu, Shaoqing Wang, Yue Hao. Solar-blind UV light-modulated β-Ga2O3 full-wave bridge rectifier[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25040027
****
H F Chen, Y D Zhang, X X Sun, J G Zong, Q Lu, Y F Jia, Z F Feng, Z Wang, L J Li, X T Liu, S Q Wang, and Y Hao, Solar-blind UV light-modulated β-Ga2O3 full-wave bridge rectifier[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25040027
|
Solar-blind UV light-modulated β-Ga2O3 full-wave bridge rectifier
DOI: 10.1088/1674-4926/25040027
CSTR: 32376.14.1674-4926.25040027
More Information-
Abstract
A monolithic integrated full-wave bridge rectifier consisted of horizontal Schottky-barrier diodes (SBD) is prepared based on 100 nm ultra-thin β-Ga2O3 and demonstrated the solar-blind UV (SUV) light-modulated characteristics. Under SUV light illumination, the rectifier has the excellent full-wave rectification characteristics for the AC input signals of 5 V, 12 V and 24 V with different frequencies. Further, experimental results confirmed the feasibility of continuously tuning the rectified output through SUV light-encoding. This work provides valuable insights for the development of optically programmable Ga2O3 AC-DC converters. -
References
[1] Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S. Gallium oxide (Ga2O3) metal–semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100(1), 013504. doi: 10.1063/1.3674287[2] Higashiwaki M, Sasaki K, Kamimura T, et al. Depletion-mode Ga2O3 metal–oxide–semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl Phys Lett, 2013, 103(12), 123511. doi: 10.1063/1.4821858[3] Ahmadi E, Oshima Y. Materials issues and devices of α- and β-Ga2O3. J Appl Phys, 2019, 126(16), 160901. doi: 10.1063/1.5123213[4] Sasaki K, Kuramata A, Masui T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 2012, 5(3), 035502. doi: 10.1143/APEX.5.035502[5] Ji M, Taylor NR, Kravchenko I, et al. Demonstration of large-size vertical Ga2O3 Schottky barrier diodes. IEEE Trans Power Electron, 2020, 36, 41.[6] Wang C, Zhang J, Xu S, et al. Progress in state-of-the-art technologies of Ga2O3 devices. J Phys D: Appl Phys, 2021, 54(24), 243001. doi: 10.1088/1361-6463/abe158[7] Hu Z, Zhao C, Feng Q, et al. The investigation of β-Ga2O3 Schottky diode with floating field ring termination and the interface states. ECS J Solid State Sci Technol, 2020, 9(2), 025001. doi: 10.1149/2162-8777/ab6162[8] Roy S, Bhattacharyya A, Ranga P, et al. High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with Baliga’s figure of merit over 1 GW/cm². IEEE Electron Device Lett, 2021, 42(8), 1140-1143. doi: 10.1109/LED.2021.3089945[9] Roy S, Batra M, Zhao X, et al. 2.1 kV (001)-β-Ga2O3 vertical Schottky barrier diode with high-k oxide field plate. Appl Phys Lett, 2023, 122(15), 153503.[10] Li WS, Nomoto K, Hu ZY, et al. Field-plated Ga2O3 trench Schottky barrier diode with a BV²/Ron, sp of up to 0.95 GW/cm². IEEE Electron Device Lett, 2020, 41, 107-110. doi: 10.1109/LED.2019.2953559[11] Gabriel K, Koubar A, El Hajj M, et al. 2.45 GHz low-power diode bridge rectifier design. In: Proc 2023 Int Conf Microelectron (ICM). IEEE, 2023[12] Busatto T, Rönnberg SK, Bollen MHJ. Comparison of models of single-phase diode bridge rectifiers for their use in harmonic studies with many devices. Energies, 2021, 15(1), 66. doi: 10.3390/en15010066[13] Zhou K, He Q, Jian G, et al. A unified hybrid compact model of β-Ga2O3 Schottky barrier diodes for mixer and rectifier applications. Sci China Inf Sci, 2021, 64, 219403. doi: 10.1007/s11432-021-3224-2[14] Hong W, Zhang C, Zhang F, et al. Performance improvement of β-Ga2O3 SBD-based rectifier with embedded microchannels in ceramic substrate. Sci China Inf Sci, 2024, 67, 159404. doi: 10.1007/s11432-024-3992-8[15] Liu Z, Zhi YS, Zhang SH, et al. Ultrahigh-performance planar β-Ga2O3 solar-blind Schottky photodiode detectors. Sci China Technol Sci, 2021, 64(1), 59-64. doi: 10.1007/s11431-020-1701-2[16] Wu D, Zhao ZH, Lu W, et al. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res, 2021, 14, 1973-1979. doi: 10.1007/s12274-021-3346-7[17] Orita M, Ohta H, Hirano M, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 2000, 77(25), 4166-4168. doi: 10.1063/1.1330559[18] Liu Z, Wang X, Liu Y, et al. A high-performance ultraviolet solar-blind photodetector based on a β-Ga2O3 Schottky photodiode. J Mater Chem C, 2019, 7, 13920-13929. doi: 10.1039/C9TC04912F -
Proportional views