Citation: |
Wanyi Ling, Ranran Liu, Kun Ren, Dianyu Qi, Yongyu Wu, Guangji Li, Miao Zhou, Qingshuang Xu, Zhenghui Xia, Xuan Li, Dertsyr Fan, Ichun Chuang, TzungWen Cheng, Chenming Tsai, Dawei Gao. Optimizing 55 nm split-gate memory for compute-in-memory: a focus on floating-gate engineering[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25060033
****
W Y Ling, R R Liu, K Ren, D Y Qi, Y Y Wu, G J Li, M Zhou, Q S Xu, Z H Xia, X Li, D Fan, I Chuang, T Cheng, C Tsai, and D W Gao, Optimizing 55 nm split-gate memory for compute-in-memory: a focus on floating-gate engineering[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25060033
|
Optimizing 55 nm split-gate memory for compute-in-memory: a focus on floating-gate engineering
DOI: 10.1088/1674-4926/25060033
CSTR: 32376.14.1674-4926.25060033
More Information-
References
[1] Yu S M, Jiang H W, Huang S S, et al. Compute-in-memory chips for deep learning: Recent trends and prospects. IEEE Circuits Syst Mag, 2021, 21(3), 31 doi: 10.1109/MCAS.2021.3092533[2] Peng X C, Huang S S, Jiang H W, et al. DNN NeuroSim V2.0: An end-to-end benchmarking framework for compute-in- memory accelerators for on-chip training. IEEE Trans Comput Aided Des Integr Circuits Syst, 2021, 40(11), 2306 doi: 10.1109/TCAD.2020.3043731[3] Yu S M, Shim W, Peng X C, et al. RRAM for compute-in-memory: From inference to training. IEEE Trans Circuits Syst I Regul Pap, 2021, 68(7), 2753 doi: 10.1109/TCSI.2021.3072200[4] Chang L, Ma X, Wang Z H, et al. DASM: Data-streaming-based computing in nonvolatile memory architecture for embedded system. IEEE Trans Very Large Scale Integr VLSI Syst, 2019, 27(9), 2046 doi: 10.1109/TVLSI.2019.2912941[5] Sun X, Khwa W S, Chen Y S, et al. PCM-based analog compute-In-memory: Impact of device non-idealities on inference accuracy. IEEE Trans Electron Devices, 2021, 68(11), 5585 doi: 10.1109/TED.2021.3113300[6] Khwa W S, Chen J J, Li J F, et al. A 65nm 4Kb algorithm-dependent computing-in-memory SRAM unit-macro with 2.3ns and 55. 8TOPS/W fully parallel product-sum operation for binary DNN edge processors, ISSCC, 2018, 8310401, 496[7] Lo Y C, Liu R S. Morphable CIM: Improving operation intensity and depthwise capability for SRAM-CIM architecture. 2023 60th ACM/IEEE Design Automation Conference (DAC), 2023, 1[8] Do N, Van Tran H, Kotov A, et al. Split-gate floating poly SuperFlash® memory technology, design, and reliability. Embedded Flash Memory for Embedded Systems: Technology, Design for Sub-systems, and Innovations. Cham: Springer International Publishing, 2017, 131[9] Yook C G, Kim J N, Kim Y, et al. Design strategies of 40 nm split-gate NOR flash memory device for low-power compute-in-memory applications. Micromachines, 2023, 14(9), 1753 doi: 10.3390/mi14091753[10] Feng Y, Sun Z H, Qi Y R, et al. Optimized operation scheme of flash-memory-based neural network online training with ultra-high endurance. J Semicond, 2024, 45(1), 012301 doi: 10.1088/1674-4926/45/1/012301[11] Feng Y, Chen B, Tang M F, et al. Near-threshold-voltage operation in flash-based high-precision computing-in-memory to implement Poisson image editing. Sci China Inf Sci, 2023, 66(12), 222402 doi: 10.1007/s11432-022-3743-x[12] Zhou Y J, Shao H Y, Zhu R T, et al. Hybrid-FE-layer FeFET with high linearity and endurance toward on-chip CIM by array demonstration. IEEE Electron Device Lett, 2024, 45(2), 276 doi: 10.1109/LED.2023.3346030[13] Jerry M, Dutta S, Kazemi A, et al. A ferroelectric field effect transistor based synaptic weight cell. J Phys D: Appl Phys, 2018, 51(43), 434001 doi: 10.1088/1361-6463/aad6f8[14] Lue H T, Hu H W, Hsu T H, et al. Design of Computing-in-Memory (CIM) with Vertical Split-Gate Flash Memory for Deep Neural Network (DNN) Inference Accelerator2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, 1[15] Zhang X R, Huang J, Liu X P, et al. An adaptive read control voltage scheme for reliability enhancement of flash-based in-memory computing architecture for neural network. IEEE Trans Device Mater Reliab, 2024, 24(3), 422 doi: 10.1109/TDMR.2024.3429662 -
Proportional views