J. Semicond. >  Just Accepted

ARTICLES

Ultralow dark current soft X-Ray detectors based on lead-free double perovskite Cs2AgBiBr6

Long Cheng1, Lijuan Huang1, Mulin Sun1, Ying Meng1, Yuan Li2, Tianyu Liu1, Pengju Tan1, Mingzhu Hu1, Huaqing Yang1, Xiaolan Ma1, Shunjie Yu1, Xiaohu Hou1, Yong Guan2, Junfa Zhu2, Xiaosong Liu2, Yu Li2, , Shibing Long1 and Qin Hu1,

+ Author Affiliations

 Corresponding author: Yu Li, yli1@ustc.edu.cn; Qin Hu, qinhu20@ustc.edu.cn

DOI: 10.1088/1674-4926/25070009CSTR: 32376.14.1674-4926.25070009

PDF

Turn off MathJax

Abstract: Soft X-ray detectors play a vital role in materials science, high-energy physics and medical imaging. Cs2AgBiBr6, a lead-free double perovskite, has gained attention for its excellent optoelectronic properties, stability, and nontoxicity. However, its fast crystallization and requirement for high-temperature annealing (>250 °C) often lead to inferior film quality, limiting its application in flexible devices. This study introduces an alloying strategy that significantly improves the quality of Cs2AgBiBr6 thin films annealed at a reduced temperature of 150 °C. Devices based on the alloyed thin films exhibit an ultra-low dark current of 0.32 nA∙cm2 and a quantum efficiency of 725%. Furthermore, the first successful integration of Cs2AgBiBr6 with a thin-film transistor backplane demonstrates its superior imaging performance, indicating that Cs2AgBiBr6 is a promising material for next-generation soft X-ray sensors.

Key words: soft X-ray detectorlead-free double perovskiteCs2AgBiBr6alloyingimaging



[1]
Suckewer S, Skinner C H. Soft X-ray lasers and their applications. Science, 1990, 247(4950), 1553 doi: 10.1126/science.2321016
[2]
Harkiolaki M, Darrow M C, Spink M C, et al. Cryo-soft X-ray tomography: Using soft X-rays to explore the ultrastructure of whole cells. Emerg Top Life Sci, 2018, 2(1), 81 doi: 10.1042/ETLS20170086
[3]
Heymes J, Ivory J, Stefanov K, et al. Characterisation of a soft X-ray optimised CMOS image sensor. J Inst, 2022, 17(5), P05003
[4]
LaMarr B, Bautz M W, Kissel S E, et al. Ground calibration of X-ray CCD detectors with charge injection for the X-ray imaging spectrometer on Astro-E2High-Energy Detectors in Astronomy. USA. SPIE, 2004, 5501, 385
[5]
Shabbir B, Liu J Y, Krishnamurthi V, et al. Soft X-ray detectors based on SnS nanosheets for the water window region. Adv Funct Materials, 2022, 32(3), 2105038 doi: 10.1002/adfm.202105038
[6]
Li Y, Liu J Y, Su X, et al. High performance broadband photo and soft X-ray detectors based on two dimensional CrSiTe3. J Mater Chem C, 2020, 8(20), 6659 doi: 10.1039/D0TC01354D
[7]
Donetski D, Kucharczyk K, Liu J H, et al. High power density soft X-ray GaAs photodiodes with tailored spectral response. Semicond Sci Technol, 2022, 37(8), 085024 doi: 10.1088/1361-6641/ac7c88
[8]
Wu H D, Ge Y S, Niu G D, et al. Metal halide perovskites for X-ray detection and imaging. Matter, 2021, 4(1), 144 doi: 10.1016/j.matt.2020.11.015
[9]
Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics, 2015, 9, 444 doi: 10.1038/nphoton.2015.82
[10]
Shrestha S, Fischer R, Matt G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat Photonics, 2017, 11, 436 doi: 10.1038/nphoton.2017.94
[11]
Hu H, Niu G D, Zheng Z P, et al. Perovskite semiconductors for ionizing radiation detection. EcoMat, 2022, 4(6), e12258 doi: 10.1002/eom2.12258
[12]
Liu J Y, Shabbir B, Wang C J, et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv Mater, 2019, 31(30), 1901644 doi: 10.1002/adma.201901644
[13]
Shabbir B, Yu J C, Warnakula T, et al. Printable perovskite diodes for broad-spectrum multienergy X-ray detection. Adv Mater, 2023, 35(20), 2210068 doi: 10.1002/adma.202210068
[14]
Tan P J, Liu T Y, Yang Y Q, et al. Flexible soft X-ray image sensors based on metal halide perovskites with high quantum efficiency. Adv Mater, 2024, 36(48), e2407244 doi: 10.1002/adma.202407244
[15]
Lu L, Pan X, Luo J H, et al. Recent advances and optoelectronic applications of lead-free halide double perovskites. Chemistry A European J, 2020, 26(71), 16975 doi: 10.1002/chem.202000788
[16]
Lei H W, Hardy D, Gao F. Lead-free double perovskite Cs2AgBiBr6: Fundamentals, applications, and perspectives. Adv Funct Materials, 2021, 31(49), 2105898 doi: 10.1002/adfm.202105898
[17]
Zhang H N, Gao Z Y, Liang R R, et al. X-ray detector based on all-inorganic lead-free Cs2AgBiBr6 perovskite single crystal. IEEE Trans Electron Devices, 2019, 66(5), 2224 doi: 10.1109/TED.2019.2903537
[18]
Geng X S, Chen Y A, Li Y Y, et al. Lead-free halide perovskites for direct X-ray detectors. Adv Sci, 2023, 10(23), 2300256 doi: 10.1002/advs.202300256
[19]
Yang X Q, Xiang H M, Huang J Y, et al. Thiourea with sulfur-donor as an effective additive for enhanced performance of lead-free double perovskite photovoltaic cells. J Colloid Interface Sci, 2022, 628, 476 doi: 10.1016/j.jcis.2022.07.165
[20]
Yang X Q, Xie A M, Xiang H M, et al. First investigation of additive engineering for highly efficient Cs2AgBiBr6-based lead-free inorganic perovskite solar cells. Appl Phys Rev, 2021, 8(4), 041402 doi: 10.1063/5.0059542
[21]
Greul E, Petrus M, Binek A, et al. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J Mater Chem A, 2017, 5(37), 19972 doi: 10.1039/C7TA06816F
[22]
Jiang B Q, Yan G H, Xiao Y, et al. Low temperature synthesis of Cs2AgBiBr6 lead-free perovskite for flexible photodetector. J Mater Sci, 2023, 58(16), 7076 doi: 10.1007/s10853-023-08451-1
[23]
Wu H, Wang Y F, Liu A J, et al. Methylammonium bromide assisted crystallization for enhanced lead-free double perovskite photovoltaic performance. Adv Funct Materials, 2022, 32(14), 2109402 doi: 10.1002/adfm.202109402
[24]
Yang J, Bao C X, Ning W H, et al. Stable, high-sensitivity and fast-response photodetectors based on lead-free Cs2AgBiBr6 double perovskite films. Adv Opt Mater, 2019, 7(13), 1801732 doi: 10.1002/adom.201801732
[25]
Zhao D D, Wang B Z, Liang C, et al. Facile deposition of high-quality Cs2AgBiBr6 films for efficient double perovskite solar cells. Sci China Mater, 2020, 63(8), 1518 doi: 10.1007/s40843-020-1346-0
[26]
De Darwent B B. Bond dissociation energies in simple molecules. Nat. Stand. Ref. Data Ser, 1970, 31, 34
[27]
Dean J A. Properties of atoms, radicals, and bonds. Lange’s Handbook of Chemistry, 1999, 15, 4.1
[28]
Du K Z, Meng W W, Wang X M, et al. Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying. Angew Chem Int Ed, 2017, 56(28), 8158 doi: 10.1002/anie.201703970
[29]
Li Z W, Senanayak S P, Dai L J, et al. Understanding the role of grain boundaries on charge-carrier and ion transport in Cs2AgBiBr6 thin films. Adv Funct Materials, 2021, 31(49), 2104981 doi: 10.1002/adfm.202104981
[30]
Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 2018, 30(35), e1801418 doi: 10.1002/adma.201801418
[31]
Wang H H, Wang Z W, Yang Z, et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv Mater, 2020, 32(21), e2000865 doi: 10.1002/adma.202000865
[32]
Zhang Z H, Wu C C, Wang D, et al. Improvement of Cs2AgBiBr6 double perovskite solar cell by rubidium doping. Org Electron, 2019, 74, 204 doi: 10.1016/j.orgel.2019.06.037
[33]
Yuan W N, Niu G D, Xian Y M, et al. In situ regulating the order–disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector. Adv Funct Materials, 2019, 29(20), 1900234 doi: 10.1002/adfm.201900234
[34]
Zhang Z Y, Sun Q D, Lu Y, et al. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nat Commun, 2022, 13(1), 3397 doi: 10.1038/s41467-022-31016-w
[35]
Sirtl M T, Hooijer R, Armer M, et al. 2D/3D hybrid Cs2AgBiBr6 double perovskite solar cells: Improved energy level alignment for higher contact-selectivity and large open circuit voltage. Adv Energy Mater, 2022, 12(7), 2103215 doi: 10.1002/aenm.202103215
[36]
Zhang H N, Dun G H, Feng Q X, et al. Encapsulated X-ray detector enabled by all-inorganic lead-free perovskite film with high sensitivity and low detection limit. IEEE Trans Electron Devices, 2020, 67(8), 3191 doi: 10.1109/TED.2020.2998763
[37]
Jin P, Tang Y J, Li D W, et al. Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy. Nat Commun, 2023, 14(1), 626 doi: 10.1038/s41467-023-36313-6
[38]
Skroblin D, Schavkan A, Pflüger M, et al. Vacuum-compatible photon-counting hybrid pixel detector for wide-angle X-ray scattering, X-ray diffraction, and X-ray reflectometry in the tender X-ray range. Rev Sci Instrum, 2020, 91(2), 023102 doi: 10.1063/1.5128487
[39]
Krumrey M, Tegeler E, Barth J, et al. Schottky type photodiodes as detectors in the VUV and soft X-ray range. Appl Opt, 1988, 27(20), 4336 doi: 10.1364/AO.27.004336
[40]
Tsai H, Liu F Z, Shrestha S, et al. A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci Adv, 2020, 6(15), eaay0815 doi: 10.1126/sciadv.aay0815
[41]
Desjardins K, Medjoubi K, Sacchi M, et al. Backside-illuminated scientific CMOS detector for soft X-ray resonant scattering and ptychography. J Synchrotron Rad, 2020, 27(6), 1577 doi: 10.1107/S160057752001262X
[42]
Harada T, Teranishi N, Watanabe T, et al. High-exposure-durability, high-quantum-efficiency (>90%) backside-illuminated soft-X-ray CMOS sensor. Appl Phys Express, 2020, 13(1), 016502 doi: 10.7567/1882-0786/ab5b5e
Fig. 1.  (Color online) Schematic illustration of perovskite film formation mechanism for control samples (a) and IAC samples (b). IT curve of control device and IAC device annealed at 280 °C (c) and at 150 °C (d). XRD patterns of control and IAC films anneal at 280 °C (e) and at 150 °C (f).

Fig. 2.  (Color online) SEM and AFM images of control and IAC films annealed at 280 °C and 150 °C. SEM of control (a) and IAC films (e) annealed at 280 °C. AFM of control (b) and IAC (f) films annealed at 280 °C. SEM of control (c) and IAC (g) films annealed at 150 °C. AFM of control (d) and IAC (h) films annealed at 150 °C.

Fig. 3.  (Color online) (a) PL spectra of control and IAC anneal at 150 °C. (b) Dark I–V curve of control and IAC devices both with a structure of ITO/NiOx /perovskite/P3HT/Au. In-situ absorption spectra of control (c) and IAC (d) films annealed at 150 °C.

Fig. 4.  (Color online) (a) XPS spectra of Cs 3d, Ag 3d, Bi 4f and Br 3d core levels of control and IAC films. (b) UPS spectra of control and IAC films. (c) The diagram of energy levels.

Fig. 5.  (Color online) (a) Schematic of the structure of the soft X-ray detector. (b) I–V curves of the control and IAC devices under dark conditions and 500 eV soft X-ray illumination. (c) Response of the IAC device at different photon energy. (d) Light-triggered response of the IAC device at 500 eV soft X-ray. (e) Cyclic time-dependent response of the IAC device at 500 eV irradiation.

Fig. 6.  (Color online) (a) The schematic diagram of the flexible device. (b) IT curves of flexible devices under 365 nm light irradiation after different bending cycles. (c) IT curves of flexible devices under 500 eV soft X-ray. (d) The schematic diagram of the imaging process. (e) Structure diagram of a single pixel of TFT. (f) Optical imaging of the ‘U’, ‘S’, ‘T’, ‘C’ of the TFT integrated perovskite photodetector array.

Table 1.   Comparison of the key parameters of Cs2AgBiBr6-based soft X-ray detectors with commercially available and literature-reported soft X-ray detectors. RT: room temperature; A: PIXIS-XO: 1024B datasheet (https://www. princetoninstruments.com/); B: AXUV100G datasheet (https://optodiode.com/).

Material structure Dark current
density
(nA∙cm-2)
Sensitivity
(μC∙Gy−1∙cm-2)
R (A∙W-1) QE (%) Work
Condition
(°C)
Ref
Si CCD sensor -- -- 0.235 (@500 eV) 1.2×104 (@500 eV) –70 A
Si PN diode 0.7 (@10 mV) -- 0.268 (@500 eV) 1.4×104 (@500 eV) RT B
GaAs PN diode -- -- 0.16 (@696 eV) 1.11×104 (@696 eV) RT [7]
SnS MSM -- 1.15×104 (@600 eV) ~2×10–5 (@600 eV) ~1.2 (@600 eV) RT [5]
CrSiTe3 MSM -- 463 (@800 eV) -- -- RT [6]
CsPbBr3
Perovskite
MSM -- 1450 -- -- RT [12]
FAPbI3
Perovskite
diode 1.18 (@2.5 mV) -- 0.161 (@500 eV) 8×103 (@500 eV) RT [14]
Cs0.1FA0.9PbI3
Perovskite
diode ~7 (@1 mV) 5×103 (@700 eV) ~5×10–3
(@700 eV)
~3.5×102
(@700 eV)
RT [13]
Cs2AgBiBr6
Perovskite
diode 0.43 (@5 mV) -- ~2.4×10–2
(@300 eV)
7.25×102
(@300 eV)
RT This
Work
DownLoad: CSV
[1]
Suckewer S, Skinner C H. Soft X-ray lasers and their applications. Science, 1990, 247(4950), 1553 doi: 10.1126/science.2321016
[2]
Harkiolaki M, Darrow M C, Spink M C, et al. Cryo-soft X-ray tomography: Using soft X-rays to explore the ultrastructure of whole cells. Emerg Top Life Sci, 2018, 2(1), 81 doi: 10.1042/ETLS20170086
[3]
Heymes J, Ivory J, Stefanov K, et al. Characterisation of a soft X-ray optimised CMOS image sensor. J Inst, 2022, 17(5), P05003
[4]
LaMarr B, Bautz M W, Kissel S E, et al. Ground calibration of X-ray CCD detectors with charge injection for the X-ray imaging spectrometer on Astro-E2High-Energy Detectors in Astronomy. USA. SPIE, 2004, 5501, 385
[5]
Shabbir B, Liu J Y, Krishnamurthi V, et al. Soft X-ray detectors based on SnS nanosheets for the water window region. Adv Funct Materials, 2022, 32(3), 2105038 doi: 10.1002/adfm.202105038
[6]
Li Y, Liu J Y, Su X, et al. High performance broadband photo and soft X-ray detectors based on two dimensional CrSiTe3. J Mater Chem C, 2020, 8(20), 6659 doi: 10.1039/D0TC01354D
[7]
Donetski D, Kucharczyk K, Liu J H, et al. High power density soft X-ray GaAs photodiodes with tailored spectral response. Semicond Sci Technol, 2022, 37(8), 085024 doi: 10.1088/1361-6641/ac7c88
[8]
Wu H D, Ge Y S, Niu G D, et al. Metal halide perovskites for X-ray detection and imaging. Matter, 2021, 4(1), 144 doi: 10.1016/j.matt.2020.11.015
[9]
Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics, 2015, 9, 444 doi: 10.1038/nphoton.2015.82
[10]
Shrestha S, Fischer R, Matt G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat Photonics, 2017, 11, 436 doi: 10.1038/nphoton.2017.94
[11]
Hu H, Niu G D, Zheng Z P, et al. Perovskite semiconductors for ionizing radiation detection. EcoMat, 2022, 4(6), e12258 doi: 10.1002/eom2.12258
[12]
Liu J Y, Shabbir B, Wang C J, et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv Mater, 2019, 31(30), 1901644 doi: 10.1002/adma.201901644
[13]
Shabbir B, Yu J C, Warnakula T, et al. Printable perovskite diodes for broad-spectrum multienergy X-ray detection. Adv Mater, 2023, 35(20), 2210068 doi: 10.1002/adma.202210068
[14]
Tan P J, Liu T Y, Yang Y Q, et al. Flexible soft X-ray image sensors based on metal halide perovskites with high quantum efficiency. Adv Mater, 2024, 36(48), e2407244 doi: 10.1002/adma.202407244
[15]
Lu L, Pan X, Luo J H, et al. Recent advances and optoelectronic applications of lead-free halide double perovskites. Chemistry A European J, 2020, 26(71), 16975 doi: 10.1002/chem.202000788
[16]
Lei H W, Hardy D, Gao F. Lead-free double perovskite Cs2AgBiBr6: Fundamentals, applications, and perspectives. Adv Funct Materials, 2021, 31(49), 2105898 doi: 10.1002/adfm.202105898
[17]
Zhang H N, Gao Z Y, Liang R R, et al. X-ray detector based on all-inorganic lead-free Cs2AgBiBr6 perovskite single crystal. IEEE Trans Electron Devices, 2019, 66(5), 2224 doi: 10.1109/TED.2019.2903537
[18]
Geng X S, Chen Y A, Li Y Y, et al. Lead-free halide perovskites for direct X-ray detectors. Adv Sci, 2023, 10(23), 2300256 doi: 10.1002/advs.202300256
[19]
Yang X Q, Xiang H M, Huang J Y, et al. Thiourea with sulfur-donor as an effective additive for enhanced performance of lead-free double perovskite photovoltaic cells. J Colloid Interface Sci, 2022, 628, 476 doi: 10.1016/j.jcis.2022.07.165
[20]
Yang X Q, Xie A M, Xiang H M, et al. First investigation of additive engineering for highly efficient Cs2AgBiBr6-based lead-free inorganic perovskite solar cells. Appl Phys Rev, 2021, 8(4), 041402 doi: 10.1063/5.0059542
[21]
Greul E, Petrus M, Binek A, et al. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J Mater Chem A, 2017, 5(37), 19972 doi: 10.1039/C7TA06816F
[22]
Jiang B Q, Yan G H, Xiao Y, et al. Low temperature synthesis of Cs2AgBiBr6 lead-free perovskite for flexible photodetector. J Mater Sci, 2023, 58(16), 7076 doi: 10.1007/s10853-023-08451-1
[23]
Wu H, Wang Y F, Liu A J, et al. Methylammonium bromide assisted crystallization for enhanced lead-free double perovskite photovoltaic performance. Adv Funct Materials, 2022, 32(14), 2109402 doi: 10.1002/adfm.202109402
[24]
Yang J, Bao C X, Ning W H, et al. Stable, high-sensitivity and fast-response photodetectors based on lead-free Cs2AgBiBr6 double perovskite films. Adv Opt Mater, 2019, 7(13), 1801732 doi: 10.1002/adom.201801732
[25]
Zhao D D, Wang B Z, Liang C, et al. Facile deposition of high-quality Cs2AgBiBr6 films for efficient double perovskite solar cells. Sci China Mater, 2020, 63(8), 1518 doi: 10.1007/s40843-020-1346-0
[26]
De Darwent B B. Bond dissociation energies in simple molecules. Nat. Stand. Ref. Data Ser, 1970, 31, 34
[27]
Dean J A. Properties of atoms, radicals, and bonds. Lange’s Handbook of Chemistry, 1999, 15, 4.1
[28]
Du K Z, Meng W W, Wang X M, et al. Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying. Angew Chem Int Ed, 2017, 56(28), 8158 doi: 10.1002/anie.201703970
[29]
Li Z W, Senanayak S P, Dai L J, et al. Understanding the role of grain boundaries on charge-carrier and ion transport in Cs2AgBiBr6 thin films. Adv Funct Materials, 2021, 31(49), 2104981 doi: 10.1002/adfm.202104981
[30]
Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 2018, 30(35), e1801418 doi: 10.1002/adma.201801418
[31]
Wang H H, Wang Z W, Yang Z, et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv Mater, 2020, 32(21), e2000865 doi: 10.1002/adma.202000865
[32]
Zhang Z H, Wu C C, Wang D, et al. Improvement of Cs2AgBiBr6 double perovskite solar cell by rubidium doping. Org Electron, 2019, 74, 204 doi: 10.1016/j.orgel.2019.06.037
[33]
Yuan W N, Niu G D, Xian Y M, et al. In situ regulating the order–disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector. Adv Funct Materials, 2019, 29(20), 1900234 doi: 10.1002/adfm.201900234
[34]
Zhang Z Y, Sun Q D, Lu Y, et al. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nat Commun, 2022, 13(1), 3397 doi: 10.1038/s41467-022-31016-w
[35]
Sirtl M T, Hooijer R, Armer M, et al. 2D/3D hybrid Cs2AgBiBr6 double perovskite solar cells: Improved energy level alignment for higher contact-selectivity and large open circuit voltage. Adv Energy Mater, 2022, 12(7), 2103215 doi: 10.1002/aenm.202103215
[36]
Zhang H N, Dun G H, Feng Q X, et al. Encapsulated X-ray detector enabled by all-inorganic lead-free perovskite film with high sensitivity and low detection limit. IEEE Trans Electron Devices, 2020, 67(8), 3191 doi: 10.1109/TED.2020.2998763
[37]
Jin P, Tang Y J, Li D W, et al. Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy. Nat Commun, 2023, 14(1), 626 doi: 10.1038/s41467-023-36313-6
[38]
Skroblin D, Schavkan A, Pflüger M, et al. Vacuum-compatible photon-counting hybrid pixel detector for wide-angle X-ray scattering, X-ray diffraction, and X-ray reflectometry in the tender X-ray range. Rev Sci Instrum, 2020, 91(2), 023102 doi: 10.1063/1.5128487
[39]
Krumrey M, Tegeler E, Barth J, et al. Schottky type photodiodes as detectors in the VUV and soft X-ray range. Appl Opt, 1988, 27(20), 4336 doi: 10.1364/AO.27.004336
[40]
Tsai H, Liu F Z, Shrestha S, et al. A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci Adv, 2020, 6(15), eaay0815 doi: 10.1126/sciadv.aay0815
[41]
Desjardins K, Medjoubi K, Sacchi M, et al. Backside-illuminated scientific CMOS detector for soft X-ray resonant scattering and ptychography. J Synchrotron Rad, 2020, 27(6), 1577 doi: 10.1107/S160057752001262X
[42]
Harada T, Teranishi N, Watanabe T, et al. High-exposure-durability, high-quantum-efficiency (>90%) backside-illuminated soft-X-ray CMOS sensor. Appl Phys Express, 2020, 13(1), 016502 doi: 10.7567/1882-0786/ab5b5e
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 33 Times PDF downloads: 2 Times Cited by: 0 Times

    History

    Received: Revised: Online: Accepted Manuscript: 05 September 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Long Cheng, Lijuan Huang, Mulin Sun, Ying Meng, Yuan Li, Tianyu Liu, Pengju Tan, Mingzhu Hu, Huaqing Yang, Xiaolan Ma, Shunjie Yu, Xiaohu Hou, Yong Guan, Junfa Zhu, Xiaosong Liu, Yu Li, Shibing Long, Qin Hu. Ultralow dark current soft X-Ray detectors based on lead-free double perovskite Cs2AgBiBr6[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25070009 ****L Cheng, L J Huang, M L Sun, Y Meng, Y Li, T Y Liu, P J Tan, M Z Hu, H Q Yang, X L Ma, S J Yu, X H Hou, Y Guan, J F Zhu, X S Liu, Y Li, S B Long, and Q Hu, Ultralow dark current soft X-Ray detectors based on lead-free double perovskite Cs2AgBiBr6[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25070009
      Citation:
      Long Cheng, Lijuan Huang, Mulin Sun, Ying Meng, Yuan Li, Tianyu Liu, Pengju Tan, Mingzhu Hu, Huaqing Yang, Xiaolan Ma, Shunjie Yu, Xiaohu Hou, Yong Guan, Junfa Zhu, Xiaosong Liu, Yu Li, Shibing Long, Qin Hu. Ultralow dark current soft X-Ray detectors based on lead-free double perovskite Cs2AgBiBr6[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25070009 ****
      L Cheng, L J Huang, M L Sun, Y Meng, Y Li, T Y Liu, P J Tan, M Z Hu, H Q Yang, X L Ma, S J Yu, X H Hou, Y Guan, J F Zhu, X S Liu, Y Li, S B Long, and Q Hu, Ultralow dark current soft X-Ray detectors based on lead-free double perovskite Cs2AgBiBr6[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25070009

      Ultralow dark current soft X-Ray detectors based on lead-free double perovskite Cs2AgBiBr6

      DOI: 10.1088/1674-4926/25070009
      CSTR: 32376.14.1674-4926.25070009
      More Information
      • Long Cheng received his bachelor’s degree from Inner Mongolia University in 2022 and his master’s degree from University of Science and Technology of China (USTC) in 2025. His research focuses on perovskite-based soft X-ray detectors
      • Qin Hu received her BS degree from Shandong University in 2012 and PhD degree from Peking University in 2017. She then worked as a postdoc researcher at Lawrence Berkeley National Laboratory from 2017 to 2020. She is currently a professor at University of Science and Technology of China. Her research interests include optoelectronic materials and devices, and synchrotron X-ray diffraction/scattering technologies
      • Corresponding author: yli1@ustc.edu.cnqinhu20@ustc.edu.cn
      • Available Online: 2025-09-05

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return