J. Semicond. >  Just Accepted

ARTICLES

Visual temperature-sensing properties of negative thermal expansion Sc2Mo3O12:Eu3+/Tb3+ flexible films

Kan Kan1, Yangke Cun1, , Qinghan Zhang1, Shenglin Ma1, Shilei Yan1, Anjun Huang1 and Zhengwen Yang1,

+ Author Affiliations

 Corresponding author: Yangke Cun, cunyangke@126.com; Zhengwen Yang, yangzw@kust.edu.cn

DOI: 10.1088/1674-4926/25110020CSTR: 32376.14.1674-4926.25110020

PDF

Turn off MathJax

Abstract: Fluorescence temperature sensing technology has become a research direction in the field of temperature measurement with its significant advantages of non-contact measurement, high spatial resolution, fast response and anti-electromagnetic interference. Although the double rare earth ion doping ratio fluorescent temperature sensing materials have made significant progress, the thermal quenching phenomenon is still the key bottleneck restricting its performance improvement. In this study, we propose to construct a flexible Sc2Mo3O12:Eu3+/Tb3+ film with negative thermal expansion characteristics, and systematically study its visual temperature sensing characteristics. The negative thermal expansion characteristics of Sc2Mo3O12 matrix effectively inhibited the thermal quenching rate of Tb3+ luminescence, and enhanced the thermal enhanced luminescence effect of Eu3+. This two-way regulation mechanism improves the intensity comparison of the two light-emitting channels, and provides an innovative strategy for improving the sensitivity of temperature sensing. The flexible film based on Eu3+/Tb3+ codoped system realizes intuitive temperature perception through the significant change of fluorescent color, and can complete the temperature interpretation without complex spectral equipment. This greatly expands its application prospect in the field of rapid field detection and real-time monitoring, and shows its broad potential in the fields of wearable devices, biomedical diagnosis, and real-time monitoring of surface temperature field.

Key words: temperature sensingflexible filmsvisualization



[1]
Chen R, Shi B N, Song K X, et al. Advances in three-dimensional temperature sensing: From materials to applications. Adv Mater, 2025, 37(43): e15604 doi: 10.1002/adma.202415604
[2]
Peng X, Dai Z, Zhang Q, et al. Intelligent microsphere-gel structures: Pioneering multi-range temperature sensing technology. Appl Mater Today, 2024, 38: 102244 doi: 10.1016/j.apmt.2024.102244
[3]
Liu L, Dou Y Y, Wang J H, et al. Recent advances in flexible temperature sensors: Materials, mechanism, fabrication, and applications. Adv Sci, 2024, 11(36): 2405003 doi: 10.1002/advs.202405003
[4]
Macairan J R, Jaunky D B, Piekny A, et al. Intracellular ratiometric temperature sensing using fluorescent carbon dots. Nanoscale Adv, 2019, 1(1): 105 doi: 10.1039/C8NA00255J
[5]
El Abidine Aly Taleb Z, Saidi K, Dammak M. High-precision optical thermometry using Pr3+-doped NaCaY(MoO4)3luminophores: A multi-spectral and chromaticity-based approach to non-contact temperature sensing. RSC Adv, 2025, 15(7): 5327 doi: 10.1039/D5RA00093A
[6]
Zhou J J, del Rosal B, Jaque D, et al. Advances and challenges for fluorescence nanothermometry. Nat Methods, 2020, 17(10): 967 doi: 10.1038/s41592-020-0957-y
[7]
Ermakova A. Fluorescent nanodiamonds for high-resolution thermometry in biology. Nanomaterials, 2024, 14(15): 1318 doi: 10.3390/nano14151318
[8]
Yu Y Y, Peng S H, Blanloeuil P, et al. Wearable temperature sensors with enhanced sensitivity by engineering microcrack morphology in PEDOT: PSS-PDMS sensors. ACS Appl Mater Interfaces, 2020, 12(32): 36578 doi: 10.1021/acsami.0c07649
[9]
Wang C L, Jin Y H, Yuan L F, et al. A spatial/temporal dual-mode optical thermometry platform based on synergetic luminescence of Ti4+-Eu3+ embedded flexible 3D micro-rod arrays: High-sensitive temperature sensing and multi-dimensional high-level secure anti-counterfeiting. Chem Eng J, 2019, 374: 992 doi: 10.1016/j.cej.2019.06.015
[10]
Liu Y, Tao J, Mo Y P, Bao R R, Pan C F, Ultrasensitive Touch Sensor for Simultaneous Tactile and Slip Sensing. Adv. Mater, 2024, 36: 2313857
[11]
Sun J N, Zhang P, Yan K, et al. High-performance nanothermometry system with controlled sensitivity based on dual-emission CsPbBr3/CdTe@SiO2 core/shell nanocomposites. J Colloid Interface Sci, 2025, 693: 137607 doi: 10.1016/j.jcis.2025.137607
[12]
Zhang X G, Huang Y M, Gong M L. Dual-emitting Ce3+, Tb3+ Co-doped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing. Chem Eng J, 2017, 307: 291 doi: 10.1016/j.cej.2016.08.087
[13]
Han L, Liu J Q, Liu P, et al. Dual-emissive Eu3+, Tb3+ Co-doped Gd2(MoO4)3 phosphor for optical thermometry application. J Phys Chem Solids, 2021, 153: 110032 doi: 10.1016/j.jpcs.2021.110032
[14]
Song E H, Chen M H, Chen Z T, et al. Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor. Nat Commun, 2022, 13: 2166 doi: 10.1038/s41467-022-29881-6
[15]
Reichstein J, Luthardt L, Martello V G, et al. Modulating the microenvironment of coumarin dyes within multihierarchical supraparticles: En route toward versatile luminescent dual-threshold temperature indicators with ratiometric readout. Adv Opt Mater, 2024, 12(18): 2303346 doi: 10.1002/adom.202303346
[16]
Zheng T, Sójka M, Woźny P, et al. Supersensitive ratiometric thermometry and manometry based on dual-emitting centers in Eu2+/Sm2+-doped strontium tetraborate phosphors. Adv Opt Mater, 2022, 10(20): 2201055
[17]
Wi S, Lee C, Han J, et al. Thermal-energy-boosted luminescence for precise optical thermometry in Eu/Tb-doped ScNbO4. Adv Opt Mater, 2025, 13(27): 2500863
[18]
Wang X F, Liu Q, Bu Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv, 2015, 5(105): 86219 doi: 10.1039/C5RA16986K
[19]
Chen Z H, Cun Y K, Yan S L, et al. Negative and positive thermal expansion effects regulate the upconversion and near-infrared downshift luminescence for multiparametric temperature sensing. Sci China Mater, 2023, 66(12): 4742 doi: 10.1007/s40843-023-2647-1
[20]
Liao J S, Wang M H, Lin F L, et al. Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3: Yb/Er with two-dimensional negative thermal expansion. Nat Commun, 2022, 13: 2090 doi: 10.1038/s41467-022-29784-6
[21]
Wang Y C, Hou H W, Bai Y L, et al. Thermal enhanced energy transfer and high thermal sensitivity of Sb3+ doped Cs2KYbCl6 rare earth double perovskites. Laser Photonics Rev, 2024, 18(11): 2400337 doi: 10.1002/lpor.202400337
[22]
Fu B, Yan H K, Li R F, et al. Heterovalent Zr4+/Nb5+-cosubstituted negative thermal expansion luminescent materials with anti-thermal quenching luminescence. Laser Photonics Rev, 2024, 18(12): 2400739
[23]
Jahanbazi F, Mao Y B. Negative thermal expansion materials as anti-thermal-quenching phosphor matrixes: Status, opportunities, and challenges. Inorg Chem, 2024, 63(20): 8989 doi: 10.1021/acs.inorgchem.4c00329
[24]
Wang Y L, Rui J H, Song H, et al. Antithermal quenching upconversion luminescence via suppressed multiphonon relaxation in positive/negative thermal expansion core/shell NaYF4: Yb/Ho@ScF3 nanoparticles. J Am Chem Soc, 2024, 146(10): 6530 doi: 10.1021/jacs.3c10886
[25]
Zhou L J, Wang W X, Xu D K, et al. Anti-thermal quenching of Eu3+ luminescence in negative thermal expansion Zr(WO4)2. Ceram Int, 2021, 47(24): 34820 doi: 10.1016/j.ceramint.2021.09.022
[26]
Zi Y Z, Yang Z W, Xu Z, et al. A novel upconversion luminescence temperature sensing material: Negative thermal expansion Y2Mo3O12: Yb3+, Er3+ and positive thermal expansion Y2Ti2O7: Yb3+, Er3+ mixed phosphor. J Alloys Compd, 2021, 880: 160156 doi: 10.1016/j.jallcom.2021.160156
[27]
Wang X F, Zhang P, Xiao X L, et al. Giant enhancement of anti-quenching upconversion luminescence in Sc2W3O12: Er3+/Yb3+ phosphors for temperature sensing. J Mater Chem C, 2024, 12(24): 8977 doi: 10.1039/D4TC01673D
[28]
Zou H, Chen B, Hu Y F, et al. Simultaneous enhancement and modulation of upconversion by thermal stimulation in Sc2Mo3O12 crystals. J Phys Chem Lett, 2020, 11(8): 3020 doi: 10.1021/acs.jpclett.0c00628
[29]
Jahanbazi F, Mao Y B. Impact of negative thermal expansion on thermal quenching of luminescence of Sc2Mo3O12: Eu3+. Chem Mater, 2022, 34(23): 10538
[30]
Li X W, Xu H L, Xia X M, et al. One-step synthesis of Sc2W3O12: Eu3+ phosphors with tunable luminescence for WLED. Ceram Int, 2019, 45(8): 10461 doi: 10.1016/j.ceramint.2019.02.107
[31]
Yuan H L, Wang C Y, Gao Q L, et al. Structure and negative thermal expansion in Zr0.3Sc1. 7Mo2. 7V0. 3O12. Inorg Chem, 2020, 59(6): 4090
[32]
Liu H F, Zhang C J, Zhang Z P, et al. Synthesis and thermal expansion behaviors of spin-coated Sc2Mo3O12 thin films. Ceram Int, 2021, 47(4): 4769 doi: 10.1016/j.ceramint.2020.10.046
[33]
Liu H F, Shao Z L, Zhu J, et al. Preparation and property of (NaZn)3+-substituted Sc2Mo3O12 ceramics with negative thermal expansion. Appl Phys Lett, 2024, 125(18): 181902 doi: 10.1063/5.0236804
[34]
Liu H F, Huang F Y, Wang W, et al. Electrospinning synthesis and negative thermal expansion of one-dimensional Sc2Mo3O12 nanofibers. Ceram Int, 2023, 49(7): 10714 doi: 10.1016/j.ceramint.2022.11.261
[35]
Chen D X, Zhang Y, Ge X H, et al. Structural, vibrational and thermal expansion properties of Sc2W4O15. Phys Chem Chem Phys, 2018, 20(30): 20160 doi: 10.1039/C8CP02403K
[36]
Wu M M, Peng J, Cheng Y Z, et al. Structural and controllable thermal expansion properties of Sc2− x Alx Mo3O12. J Alloys Compd, 2013, 577: 295 doi: 10.1016/j.jallcom.2013.06.019
[37]
Keskin İ Ç, Gültekin S, Katı M İ, et al. Structural, optical, luminescence properties and energy transfer mechanism of Tb3+/Eu3+co-doped SrLa2(MoO4)4 phosphors produced by sol-gel process. J Alloys Compd, 2019, 789: 932 doi: 10.1016/j.jallcom.2019.03.153
[38]
Zhao B, Yuan L, Hu S S, et al. One-step hydrothermal synthesis of Sc2Mo3O12: Ln3+ (Ln = Eu, Tb, Dy, Tb/Eu, Dy/Eu) nanosheets and their multicolor tunable luminescence. New J Chem, 2016, 40(11): 9211 doi: 10.1039/C6NJ02039A
[39]
Li K, Van Deun R. Site-Bi3+ and Eu3+ dual emissions in color-tunable Ca2Y8(SiO4)6O2: Bi3+, Eu3+ phosphors prepared via sol-gel synthesis for potentially ratiometric temperature sensing. J Alloys Compd, 2019, 787: 86 doi: 10.1016/j.jallcom.2019.02.087
[40]
Zhao J F, Gao H, Xu H, et al. Structure and photoluminescence of Eu3+ doped Sr2InTaO6 red phosphor with high color purity. RSC Adv, 2021, 11(14): 8282 doi: 10.1039/D1RA00165E
[41]
Pu L Y, Li P L, Zhao J Y, et al. Eu3+-activated single-band ratiometric nanothermometry by lattice negative thermal expansion. Laser Photonics Rev, 2023, 17(8): 2200884
[42]
Chen Y Q, Guo H J, Shi Q F, et al. Single-band ratiometric thermometry strategy based on the completely reversed thermal excitation of O2–→ Eu3+ CTB edge and Eu3+ 4f → 4f transition. Inorg Chem, 2024, 63(35): 16304 doi: 10.1021/acs.inorgchem.4c02268
[43]
Kong L, Sun H, Nie Y H, et al. Luminescent properties and charge compensator effects of SrMo0.5W0.5O4: Eu3+ for white light LEDs. Molecules, 2023, 28(6): 2681
[44]
Pawlik N, Szpikowska-Sroka B, Goryczka T, et al. Structural and photoluminescence investigations of Tb3+/Eu3+ Co-doped silicate sol-gel glass-ceramics containing CaF2 nanocrystals. Materials, 2021, 14(4): 754 doi: 10.3390/ma14040754
[45]
Ayoub I, Mushtaq U, Nair G B, et al. Exploring the Sr2Ga2GeO7: Tb3+ long persistent luminescence phosphor for cutting-edge forensic solutions in latent fingerprint detection and anticounterfeiting applications. Small, 2025, 21(13): 2500285
[46]
Zhai Y Q, Sun Q L, Yang S, et al. Morphology-controlled synthesis and luminescence properties of green-emitting NaGd(WO4)2: Tb3+ phosphors excited by n-UV excitation. J Alloys Compd, 2019, 781: 415 doi: 10.1016/j.jallcom.2018.12.055
[47]
Kang X J, Lu S, Wang H C, et al. Tricolor- and white light-emitting Ce3+/Tb3+/Mn2+-coactivated Li2Ca4Si4O13 phosphor via energy transfer. ACS Omega, 2018, 3(12): 16714
[48]
Niu Y D, Wang Y Z, Zhu K M, et al. Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12: Eu3+ phosphors. Chin Phys B, 2023, 32(2): 028703
[49]
Yan S L, Pi D M, Zi Y Z, et al. Visualized real-time flexible high-temperature sensing in Eu3+/Tb3+-doped Y2Mo3O12 negative thermal expansion material films. J Mater Chem C, 2024, 12(26): 9606 doi: 10.1039/D4TC01207K
[50]
Li S D, Meng Q Y, Lü S C, et al. Study on optical temperature sensing properties of Tb3+, Eu3+ Co-doped CaMoO4 phosphor. J Lumin, 2018, 200: 103 doi: 10.1016/j.jlumin.2018.04.009
[51]
Lv H C, Du P, Li W P, et al. Tailoring of upconversion emission in Tm3+/Yb3+-codoped Y2Mo3O12 submicron particles via thermal stimulation engineering for non-invasive thermometry. ACS Sustainable Chem Eng, 2022, 10(7): 2450 doi: 10.1021/acssuschemeng.1c07323
[52]
Huang Z J, Lin J, Zhang X, et al. Fluorescence temperature sensing based on thermal enhancement effect in negative thermal expansion matrix. J Lumin, 2023, 257: 119777 doi: 10.1016/j.jlumin.2023.119777
[53]
Fu B, Yan H K, Li R F, et al. Simultaneously tuning the luminescent color and realizing an optical temperature sensor by negative thermal expansion in Sc2(WO4)3: Tb/Eu phosphors. Dalton Trans, 2024, 53(2): 798 doi: 10.1039/D3DT03162D
[54]
Paiva D V M, Jakka S K, Silva M A S, et al. Investigation on luminescence based optical temperature sensing behavior of Sr3MoO6: Eu3+/Tb3+. Optik, 2021, 246: 167825 doi: 10.1016/j.ijleo.2021.167825
[55]
Peng L X, Meng Q Y, Sun W J. Size dependent optical temperature sensing properties of Y2O3: Tb3+, Eu3+ nanophosphors. RSC Adv, 2019, 9(5): 2581
[56]
Wu H Y, Li H M, Jiang L H, et al. Design of white-emitting optical temperature sensor based on energy transfer in a Bi3+, Eu3+ and Tb3+ doped YBO3 crystal. J Mater Chem C, 2021, 9(23): 7264
[57]
Zhang Y X, Chen C H, Wu Y Q, et al. Phonon-assisted thermally enhanced up-conversion fluorescence lifetime thermometry and visualized temperature warning in Yb3+–Ho3+-codoped Lu2Mo3O12. Inorg Chem, 2025, 64(12): 6205 doi: 10.1021/acs.inorgchem.4c05595
[58]
Sun G F, Ma Z L, Xiao Z, et al. All-fiber-type temperature sensor powered by zinc-ion battery toward wearable sensing clothes for health monitoring. Adv Funct Mater, 2025: e18490
[59]
Ding N B, Zhen Y P, Peng R G, et al. Simultaneously preventing oxygen evolution, structure degradation, and thermal release in lithium-rich layered oxides via in situ surface anchoring negative thermal expansion material. Adv Energy Mater, 2025: e03693
[60]
Zi Y Z, Cun Y K, Bai X, et al. Negative lattice expansion-induced upconversion luminescence thermal enhancement in novel Na2MoO4: Yb3+, Er3+ transparent glass ceramics for temperature sensing applications. J Mater Chem C, 2023, 11(4): 1541 doi: 10.1039/D2TC05009A
[61]
Yang Y M, Lin L, Lu P, et al. A linear calibrated high temperature sensor based on up-conversion fluorescence of Y2Mo3O12: Er3+, Yb3+ enhanced by negative thermal expansion. J Lumin, 2021, 240: 118410 doi: 10.1016/j.jlumin.2021.118410
Fig. 1.  (Color online) (a) Schematic of the lattice volume of Sc2Mo3O12. (b) Temperature-dependent in-situ XRD spectra of Sc2Mo3O12. (c) Temperature evolution of the unit cell volume of Sc2Mo3O12. (d) Temperature dependence of the unit cell parameters (a, b, and c axes) of Sc2Mo3O12.

Fig. 2.  (Color online) (a, c) the room-temperature PL and PLE spectrum of Sc2Mo3O12: Tb3+ and Sc2Mo3O12: Eu3+ phosphors; (b, d) the mechanism of Sc2Mo3O12: Tb3+ and Sc2Mo3O12: Eu3+ phosphors.

Fig. 3.  (Color online) (a, c) the temperature dependent PL spectra and (b, d) the enhancement factor of 625 nm luminescence intensity of Sc2Mo3O12: Eu3+ phosphors under excitation at 292 nm laser and 395 nm laser. (e) the temperature dependent PL spectra and (f) the enhancement factor of 618 nm luminescence intensity of Sc2Mo3O12: Tb3+ phosphors under excitation at 292 nm laser.

Fig. 4.  (Color online) (a−c) Temperature-dependent photoluminescence (PL) spectra of the mixed phosphor recorded from 293 K to 573 K. (d) Corresponding CIE chromaticity coordinates. (e) Fluorescence intensity ratio (FIR) of Eu3+ (I618) to Tb3+ (I495). (f) Thermal sensitivity (Sr) calculated from the intensity ratio I618/I495.

Fig. 5.  (Color online) (a−c) Mechanical Flexibility of the Sc2Mo3O12:Eu3+/Tb3+ Flexible Films (d) Thermochromic photoluminescence (283−623 K) of the flexible film under 295nm excitation and (e) Luminescent 'bird' pattern for the visualization.

[1]
Chen R, Shi B N, Song K X, et al. Advances in three-dimensional temperature sensing: From materials to applications. Adv Mater, 2025, 37(43): e15604 doi: 10.1002/adma.202415604
[2]
Peng X, Dai Z, Zhang Q, et al. Intelligent microsphere-gel structures: Pioneering multi-range temperature sensing technology. Appl Mater Today, 2024, 38: 102244 doi: 10.1016/j.apmt.2024.102244
[3]
Liu L, Dou Y Y, Wang J H, et al. Recent advances in flexible temperature sensors: Materials, mechanism, fabrication, and applications. Adv Sci, 2024, 11(36): 2405003 doi: 10.1002/advs.202405003
[4]
Macairan J R, Jaunky D B, Piekny A, et al. Intracellular ratiometric temperature sensing using fluorescent carbon dots. Nanoscale Adv, 2019, 1(1): 105 doi: 10.1039/C8NA00255J
[5]
El Abidine Aly Taleb Z, Saidi K, Dammak M. High-precision optical thermometry using Pr3+-doped NaCaY(MoO4)3luminophores: A multi-spectral and chromaticity-based approach to non-contact temperature sensing. RSC Adv, 2025, 15(7): 5327 doi: 10.1039/D5RA00093A
[6]
Zhou J J, del Rosal B, Jaque D, et al. Advances and challenges for fluorescence nanothermometry. Nat Methods, 2020, 17(10): 967 doi: 10.1038/s41592-020-0957-y
[7]
Ermakova A. Fluorescent nanodiamonds for high-resolution thermometry in biology. Nanomaterials, 2024, 14(15): 1318 doi: 10.3390/nano14151318
[8]
Yu Y Y, Peng S H, Blanloeuil P, et al. Wearable temperature sensors with enhanced sensitivity by engineering microcrack morphology in PEDOT: PSS-PDMS sensors. ACS Appl Mater Interfaces, 2020, 12(32): 36578 doi: 10.1021/acsami.0c07649
[9]
Wang C L, Jin Y H, Yuan L F, et al. A spatial/temporal dual-mode optical thermometry platform based on synergetic luminescence of Ti4+-Eu3+ embedded flexible 3D micro-rod arrays: High-sensitive temperature sensing and multi-dimensional high-level secure anti-counterfeiting. Chem Eng J, 2019, 374: 992 doi: 10.1016/j.cej.2019.06.015
[10]
Liu Y, Tao J, Mo Y P, Bao R R, Pan C F, Ultrasensitive Touch Sensor for Simultaneous Tactile and Slip Sensing. Adv. Mater, 2024, 36: 2313857
[11]
Sun J N, Zhang P, Yan K, et al. High-performance nanothermometry system with controlled sensitivity based on dual-emission CsPbBr3/CdTe@SiO2 core/shell nanocomposites. J Colloid Interface Sci, 2025, 693: 137607 doi: 10.1016/j.jcis.2025.137607
[12]
Zhang X G, Huang Y M, Gong M L. Dual-emitting Ce3+, Tb3+ Co-doped LaOBr phosphor: Luminescence, energy transfer and ratiometric temperature sensing. Chem Eng J, 2017, 307: 291 doi: 10.1016/j.cej.2016.08.087
[13]
Han L, Liu J Q, Liu P, et al. Dual-emissive Eu3+, Tb3+ Co-doped Gd2(MoO4)3 phosphor for optical thermometry application. J Phys Chem Solids, 2021, 153: 110032 doi: 10.1016/j.jpcs.2021.110032
[14]
Song E H, Chen M H, Chen Z T, et al. Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor. Nat Commun, 2022, 13: 2166 doi: 10.1038/s41467-022-29881-6
[15]
Reichstein J, Luthardt L, Martello V G, et al. Modulating the microenvironment of coumarin dyes within multihierarchical supraparticles: En route toward versatile luminescent dual-threshold temperature indicators with ratiometric readout. Adv Opt Mater, 2024, 12(18): 2303346 doi: 10.1002/adom.202303346
[16]
Zheng T, Sójka M, Woźny P, et al. Supersensitive ratiometric thermometry and manometry based on dual-emitting centers in Eu2+/Sm2+-doped strontium tetraborate phosphors. Adv Opt Mater, 2022, 10(20): 2201055
[17]
Wi S, Lee C, Han J, et al. Thermal-energy-boosted luminescence for precise optical thermometry in Eu/Tb-doped ScNbO4. Adv Opt Mater, 2025, 13(27): 2500863
[18]
Wang X F, Liu Q, Bu Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv, 2015, 5(105): 86219 doi: 10.1039/C5RA16986K
[19]
Chen Z H, Cun Y K, Yan S L, et al. Negative and positive thermal expansion effects regulate the upconversion and near-infrared downshift luminescence for multiparametric temperature sensing. Sci China Mater, 2023, 66(12): 4742 doi: 10.1007/s40843-023-2647-1
[20]
Liao J S, Wang M H, Lin F L, et al. Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3: Yb/Er with two-dimensional negative thermal expansion. Nat Commun, 2022, 13: 2090 doi: 10.1038/s41467-022-29784-6
[21]
Wang Y C, Hou H W, Bai Y L, et al. Thermal enhanced energy transfer and high thermal sensitivity of Sb3+ doped Cs2KYbCl6 rare earth double perovskites. Laser Photonics Rev, 2024, 18(11): 2400337 doi: 10.1002/lpor.202400337
[22]
Fu B, Yan H K, Li R F, et al. Heterovalent Zr4+/Nb5+-cosubstituted negative thermal expansion luminescent materials with anti-thermal quenching luminescence. Laser Photonics Rev, 2024, 18(12): 2400739
[23]
Jahanbazi F, Mao Y B. Negative thermal expansion materials as anti-thermal-quenching phosphor matrixes: Status, opportunities, and challenges. Inorg Chem, 2024, 63(20): 8989 doi: 10.1021/acs.inorgchem.4c00329
[24]
Wang Y L, Rui J H, Song H, et al. Antithermal quenching upconversion luminescence via suppressed multiphonon relaxation in positive/negative thermal expansion core/shell NaYF4: Yb/Ho@ScF3 nanoparticles. J Am Chem Soc, 2024, 146(10): 6530 doi: 10.1021/jacs.3c10886
[25]
Zhou L J, Wang W X, Xu D K, et al. Anti-thermal quenching of Eu3+ luminescence in negative thermal expansion Zr(WO4)2. Ceram Int, 2021, 47(24): 34820 doi: 10.1016/j.ceramint.2021.09.022
[26]
Zi Y Z, Yang Z W, Xu Z, et al. A novel upconversion luminescence temperature sensing material: Negative thermal expansion Y2Mo3O12: Yb3+, Er3+ and positive thermal expansion Y2Ti2O7: Yb3+, Er3+ mixed phosphor. J Alloys Compd, 2021, 880: 160156 doi: 10.1016/j.jallcom.2021.160156
[27]
Wang X F, Zhang P, Xiao X L, et al. Giant enhancement of anti-quenching upconversion luminescence in Sc2W3O12: Er3+/Yb3+ phosphors for temperature sensing. J Mater Chem C, 2024, 12(24): 8977 doi: 10.1039/D4TC01673D
[28]
Zou H, Chen B, Hu Y F, et al. Simultaneous enhancement and modulation of upconversion by thermal stimulation in Sc2Mo3O12 crystals. J Phys Chem Lett, 2020, 11(8): 3020 doi: 10.1021/acs.jpclett.0c00628
[29]
Jahanbazi F, Mao Y B. Impact of negative thermal expansion on thermal quenching of luminescence of Sc2Mo3O12: Eu3+. Chem Mater, 2022, 34(23): 10538
[30]
Li X W, Xu H L, Xia X M, et al. One-step synthesis of Sc2W3O12: Eu3+ phosphors with tunable luminescence for WLED. Ceram Int, 2019, 45(8): 10461 doi: 10.1016/j.ceramint.2019.02.107
[31]
Yuan H L, Wang C Y, Gao Q L, et al. Structure and negative thermal expansion in Zr0.3Sc1. 7Mo2. 7V0. 3O12. Inorg Chem, 2020, 59(6): 4090
[32]
Liu H F, Zhang C J, Zhang Z P, et al. Synthesis and thermal expansion behaviors of spin-coated Sc2Mo3O12 thin films. Ceram Int, 2021, 47(4): 4769 doi: 10.1016/j.ceramint.2020.10.046
[33]
Liu H F, Shao Z L, Zhu J, et al. Preparation and property of (NaZn)3+-substituted Sc2Mo3O12 ceramics with negative thermal expansion. Appl Phys Lett, 2024, 125(18): 181902 doi: 10.1063/5.0236804
[34]
Liu H F, Huang F Y, Wang W, et al. Electrospinning synthesis and negative thermal expansion of one-dimensional Sc2Mo3O12 nanofibers. Ceram Int, 2023, 49(7): 10714 doi: 10.1016/j.ceramint.2022.11.261
[35]
Chen D X, Zhang Y, Ge X H, et al. Structural, vibrational and thermal expansion properties of Sc2W4O15. Phys Chem Chem Phys, 2018, 20(30): 20160 doi: 10.1039/C8CP02403K
[36]
Wu M M, Peng J, Cheng Y Z, et al. Structural and controllable thermal expansion properties of Sc2− x Alx Mo3O12. J Alloys Compd, 2013, 577: 295 doi: 10.1016/j.jallcom.2013.06.019
[37]
Keskin İ Ç, Gültekin S, Katı M İ, et al. Structural, optical, luminescence properties and energy transfer mechanism of Tb3+/Eu3+co-doped SrLa2(MoO4)4 phosphors produced by sol-gel process. J Alloys Compd, 2019, 789: 932 doi: 10.1016/j.jallcom.2019.03.153
[38]
Zhao B, Yuan L, Hu S S, et al. One-step hydrothermal synthesis of Sc2Mo3O12: Ln3+ (Ln = Eu, Tb, Dy, Tb/Eu, Dy/Eu) nanosheets and their multicolor tunable luminescence. New J Chem, 2016, 40(11): 9211 doi: 10.1039/C6NJ02039A
[39]
Li K, Van Deun R. Site-Bi3+ and Eu3+ dual emissions in color-tunable Ca2Y8(SiO4)6O2: Bi3+, Eu3+ phosphors prepared via sol-gel synthesis for potentially ratiometric temperature sensing. J Alloys Compd, 2019, 787: 86 doi: 10.1016/j.jallcom.2019.02.087
[40]
Zhao J F, Gao H, Xu H, et al. Structure and photoluminescence of Eu3+ doped Sr2InTaO6 red phosphor with high color purity. RSC Adv, 2021, 11(14): 8282 doi: 10.1039/D1RA00165E
[41]
Pu L Y, Li P L, Zhao J Y, et al. Eu3+-activated single-band ratiometric nanothermometry by lattice negative thermal expansion. Laser Photonics Rev, 2023, 17(8): 2200884
[42]
Chen Y Q, Guo H J, Shi Q F, et al. Single-band ratiometric thermometry strategy based on the completely reversed thermal excitation of O2–→ Eu3+ CTB edge and Eu3+ 4f → 4f transition. Inorg Chem, 2024, 63(35): 16304 doi: 10.1021/acs.inorgchem.4c02268
[43]
Kong L, Sun H, Nie Y H, et al. Luminescent properties and charge compensator effects of SrMo0.5W0.5O4: Eu3+ for white light LEDs. Molecules, 2023, 28(6): 2681
[44]
Pawlik N, Szpikowska-Sroka B, Goryczka T, et al. Structural and photoluminescence investigations of Tb3+/Eu3+ Co-doped silicate sol-gel glass-ceramics containing CaF2 nanocrystals. Materials, 2021, 14(4): 754 doi: 10.3390/ma14040754
[45]
Ayoub I, Mushtaq U, Nair G B, et al. Exploring the Sr2Ga2GeO7: Tb3+ long persistent luminescence phosphor for cutting-edge forensic solutions in latent fingerprint detection and anticounterfeiting applications. Small, 2025, 21(13): 2500285
[46]
Zhai Y Q, Sun Q L, Yang S, et al. Morphology-controlled synthesis and luminescence properties of green-emitting NaGd(WO4)2: Tb3+ phosphors excited by n-UV excitation. J Alloys Compd, 2019, 781: 415 doi: 10.1016/j.jallcom.2018.12.055
[47]
Kang X J, Lu S, Wang H C, et al. Tricolor- and white light-emitting Ce3+/Tb3+/Mn2+-coactivated Li2Ca4Si4O13 phosphor via energy transfer. ACS Omega, 2018, 3(12): 16714
[48]
Niu Y D, Wang Y Z, Zhu K M, et al. Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12: Eu3+ phosphors. Chin Phys B, 2023, 32(2): 028703
[49]
Yan S L, Pi D M, Zi Y Z, et al. Visualized real-time flexible high-temperature sensing in Eu3+/Tb3+-doped Y2Mo3O12 negative thermal expansion material films. J Mater Chem C, 2024, 12(26): 9606 doi: 10.1039/D4TC01207K
[50]
Li S D, Meng Q Y, Lü S C, et al. Study on optical temperature sensing properties of Tb3+, Eu3+ Co-doped CaMoO4 phosphor. J Lumin, 2018, 200: 103 doi: 10.1016/j.jlumin.2018.04.009
[51]
Lv H C, Du P, Li W P, et al. Tailoring of upconversion emission in Tm3+/Yb3+-codoped Y2Mo3O12 submicron particles via thermal stimulation engineering for non-invasive thermometry. ACS Sustainable Chem Eng, 2022, 10(7): 2450 doi: 10.1021/acssuschemeng.1c07323
[52]
Huang Z J, Lin J, Zhang X, et al. Fluorescence temperature sensing based on thermal enhancement effect in negative thermal expansion matrix. J Lumin, 2023, 257: 119777 doi: 10.1016/j.jlumin.2023.119777
[53]
Fu B, Yan H K, Li R F, et al. Simultaneously tuning the luminescent color and realizing an optical temperature sensor by negative thermal expansion in Sc2(WO4)3: Tb/Eu phosphors. Dalton Trans, 2024, 53(2): 798 doi: 10.1039/D3DT03162D
[54]
Paiva D V M, Jakka S K, Silva M A S, et al. Investigation on luminescence based optical temperature sensing behavior of Sr3MoO6: Eu3+/Tb3+. Optik, 2021, 246: 167825 doi: 10.1016/j.ijleo.2021.167825
[55]
Peng L X, Meng Q Y, Sun W J. Size dependent optical temperature sensing properties of Y2O3: Tb3+, Eu3+ nanophosphors. RSC Adv, 2019, 9(5): 2581
[56]
Wu H Y, Li H M, Jiang L H, et al. Design of white-emitting optical temperature sensor based on energy transfer in a Bi3+, Eu3+ and Tb3+ doped YBO3 crystal. J Mater Chem C, 2021, 9(23): 7264
[57]
Zhang Y X, Chen C H, Wu Y Q, et al. Phonon-assisted thermally enhanced up-conversion fluorescence lifetime thermometry and visualized temperature warning in Yb3+–Ho3+-codoped Lu2Mo3O12. Inorg Chem, 2025, 64(12): 6205 doi: 10.1021/acs.inorgchem.4c05595
[58]
Sun G F, Ma Z L, Xiao Z, et al. All-fiber-type temperature sensor powered by zinc-ion battery toward wearable sensing clothes for health monitoring. Adv Funct Mater, 2025: e18490
[59]
Ding N B, Zhen Y P, Peng R G, et al. Simultaneously preventing oxygen evolution, structure degradation, and thermal release in lithium-rich layered oxides via in situ surface anchoring negative thermal expansion material. Adv Energy Mater, 2025: e03693
[60]
Zi Y Z, Cun Y K, Bai X, et al. Negative lattice expansion-induced upconversion luminescence thermal enhancement in novel Na2MoO4: Yb3+, Er3+ transparent glass ceramics for temperature sensing applications. J Mater Chem C, 2023, 11(4): 1541 doi: 10.1039/D2TC05009A
[61]
Yang Y M, Lin L, Lu P, et al. A linear calibrated high temperature sensor based on up-conversion fluorescence of Y2Mo3O12: Er3+, Yb3+ enhanced by negative thermal expansion. J Lumin, 2021, 240: 118410 doi: 10.1016/j.jlumin.2021.118410

Supporting_information.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 28 Times PDF downloads: 12 Times Cited by: 0 Times

    History

    Received: 20 November 2025 Revised: 09 January 2026 Online: Accepted Manuscript: 22 January 2026

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Kan Kan, Yangke Cun, Qinghan Zhang, Shenglin Ma, Shilei Yan, Anjun Huang, Zhengwen Yang. Visual temperature-sensing properties of negative thermal expansion Sc2Mo3O12:Eu3+/Tb3+ flexible films[J]. Journal of Semiconductors, 2026, In Press. doi: 10.1088/1674-4926/25110020 ****K Kan, Y K Cun, Q H Zhang, S L Ma, S L Yan, A J Huang, and Z W Yang, Visual temperature-sensing properties of negative thermal expansion Sc2Mo3O12:Eu3+/Tb3+ flexible films[J]. J. Semicond., 2026, accepted doi: 10.1088/1674-4926/25110020
      Citation:
      Kan Kan, Yangke Cun, Qinghan Zhang, Shenglin Ma, Shilei Yan, Anjun Huang, Zhengwen Yang. Visual temperature-sensing properties of negative thermal expansion Sc2Mo3O12:Eu3+/Tb3+ flexible films[J]. Journal of Semiconductors, 2026, In Press. doi: 10.1088/1674-4926/25110020 ****
      K Kan, Y K Cun, Q H Zhang, S L Ma, S L Yan, A J Huang, and Z W Yang, Visual temperature-sensing properties of negative thermal expansion Sc2Mo3O12:Eu3+/Tb3+ flexible films[J]. J. Semicond., 2026, accepted doi: 10.1088/1674-4926/25110020

      Visual temperature-sensing properties of negative thermal expansion Sc2Mo3O12:Eu3+/Tb3+ flexible films

      DOI: 10.1088/1674-4926/25110020
      CSTR: 32376.14.1674-4926.25110020
      More Information
      • Kan Kan is a Master's candidate at Kunming University of Science and Technology, with his research primarily focused on luminescent materials and the fabrication and applications of flexible alternating current electroluminescent devices
      • Yangke Cun received her PhD degree from South China University of Technology in 2020. She is currently a contract associate professor at the College of Materials Science and Engineering, Kunming University of Science and Technology. She obtained her bachelor's from Kunming University of Science and Technology in 2015. Her research interests include the Optoelectronic functional materials and devices
      • Zhengwen Yang is currently a professor at the College of Materials Science and Engineering, Kunming University of Science and Technology. He obtained his bachelor’s degree in 2002 and master's degree in 2005 from Jilin University, respectively. He received his PhD degree from Tsinghua University in 2009. His research interests include the Luminescence control of inorganic materials and external field control of discoloration
      • Corresponding author: cunyangke@126.comyangzw@kust.edu.cn
      • Received Date: 2025-11-20
      • Revised Date: 2026-01-09
      • Available Online: 2026-01-22

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return