J. Semicond. > 2011, Volume 32 > Issue 10 > 104003

SEMICONDUCTOR DEVICES

Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

Liu Jin, Chen Yongguang, Tan Zhiliang, Yang Jie, Zhang Xijun and Wang Zhenxing

+ Author Affiliations
DOI: 10.1088/1674-4926/32/10/104003

PDF

Abstract: Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

Key words: microwave BJT ESD failure mechanism accumulation effect

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
1

Recent progress of physical failure analysis of GaN HEMTs

Xiaolong Cai, Chenglin Du, Zixuan Sun, Ran Ye, Haijun Liu, et al.

Journal of Semiconductors, 2021, 42(5): 051801. doi: 10.1088/1674-4926/42/5/051801

2

A novel DTSCR with a variation lateral base doping structure to improve turn-on speed for ESD protection

Jizhi Liu, Zhiwei Liu, Ze Jia, Juin. J Liou

Journal of Semiconductors, 2014, 35(6): 064010. doi: 10.1088/1674-4926/35/6/064010

3

ESD performance of LDMOS with source-bulk layout structure optimization

Lingli Jiang, Hang Fan, Lijuan Lin, Bo Zhang

Journal of Semiconductors, 2013, 34(12): 124003. doi: 10.1088/1674-4926/34/12/124003

4

Analysis on the positive dependence of channel length on ESD failure current of a GGNMOS in a 5 V CMOS

Daoxun Wu, Lingli Jiang, Hang Fan, Jian Fang, Bo Zhang, et al.

Journal of Semiconductors, 2013, 34(2): 024004. doi: 10.1088/1674-4926/34/2/024004

5

A novel high performance ESD power clamp circuit with a small area

Yang Zhaonian, Liu Hongxia, Li Li, Zhuo Qingqing

Journal of Semiconductors, 2012, 33(9): 095006. doi: 10.1088/1674-4926/33/9/095006

6

Impact of parasitic resistance on the ESD robustness of high-voltage devices

Lin Lijuan, Jiang Lingli, Fan Hang, Zhang Bo

Journal of Semiconductors, 2012, 33(1): 014005. doi: 10.1088/1674-4926/33/1/014005

7

A novel double-trench LVTSCR used in the ESD protection of a RFIC

Li Li, Liu Hongxia

Journal of Semiconductors, 2011, 32(10): 104005. doi: 10.1088/1674-4926/32/10/104005

8

Improved III-nitrides based light-emitting diodes anti-electrostatic discharge capacity with an AlGaN/GaN stack insert layer

Li Zhicong, Li Panpan, Wang Bing, Li Hongjian, Liang Meng, et al.

Journal of Semiconductors, 2011, 32(11): 114007. doi: 10.1088/1674-4926/32/11/114007

9

ESD robustness studies on the double snapback characteristics of an LDMOS with an embedded SCR

Jiang Lingli, Zhang Bo, Fan Hang, Qiao Ming, Li Zhaoji, et al.

Journal of Semiconductors, 2011, 32(9): 094002. doi: 10.1088/1674-4926/32/9/094002

10

Modeling and experimental research on a removal mechanism during chemical mechanical polishing at the molecular scale

An Wei, Zhao Yongwu, Wang Yongguang

Journal of Semiconductors, 2010, 31(11): 116005. doi: 10.1088/1674-4926/31/11/116005

11

Thermal characteristics investigation of high voltage grounded gate-LDMOS under ESD stress conditions

Sun Weifeng, Qian Qinsong, Wang Wen, Yi Yangbo

Journal of Semiconductors, 2009, 30(10): 104004. doi: 10.1088/1674-4926/30/10/104004

12

Working mechanism of a SiC nanotube NO2 gas sensor

Ding Ruixue, Yang Yintang, Liu Lianxi

Journal of Semiconductors, 2009, 30(11): 114010. doi: 10.1088/1674-4926/30/11/114010

13

A Novel ESD Protection Circuit Based on a CMOS Process

Zhang Bing, Chai Changchun, Yang Yintang

Journal of Semiconductors, 2008, 29(9): 1808-1812.

14

Emerging Challenges in ESD Protection for RF ICs in CMOS

Wang Albert, Lin Lin, Wang Xin, Liu Hainan, Zhou Yumei, et al.

Journal of Semiconductors, 2008, 29(4): 628-636.

15

ESD Transient Model of Vertical DMOS Power Devices

Li Zehong, Zhou Chunhua, Hu Yonggui, Liu Yong, Zhang Bo, et al.

Journal of Semiconductors, 2008, 29(10): 2014-2017.

16

Low-Microwave Loss Coplanar Waveguides Fabricated on High-Resistivity Silicon Substrate

Yang Hua, Zhu Hongliang, Xie Hongyun, Zhao Lingjuan, Zhou Fan, et al.

Chinese Journal of Semiconductors , 2006, 27(1): 1-4.

17

A Failure-Mechanism Identification Method in Accelerated Testing

Guo Chunsheng, Xie Xuesong, Ma Weidong, Cheng Yaohai, Li Zhiguo, et al.

Chinese Journal of Semiconductors , 2006, 27(3): 560-563.

18

Device Structure and Fabricating Method for SOI LIGBT/LDMOSIntegrated with Anti-ESD Diode

Zhang Haipeng, Wang Qin, Sun Lingling, Gao Mingyu, Li Wenjun, et al.

Chinese Journal of Semiconductors , 2006, 27(S1): 279-282.

19

Thin-Film Accumulation-Mode SOI pMOSFET

Lian Jun, Hai Chaohe,and Cheng Chao

Chinese Journal of Semiconductors , 2005, 26(1): 29-33.

20

CMOS工艺中GG-NMOS结构ESD保护电路设计

Chinese Journal of Semiconductors , 2005, 26(8): 1619-1622.

  • Search

    Advanced Search >>

    GET CITATION

    Liu Jin, Chen Yongguang, Tan Zhiliang, Yang Jie, Zhang Xijun, Wang Zhenxing. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge[J]. Journal of Semiconductors, 2011, 32(10): 104003. doi: 10.1088/1674-4926/32/10/104003
    Liu J, Chen Y G, Tan Z L, Yang J, Zhang X J, Wang Z X. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge[J]. J. Semicond., 2011, 32(10): 104003. doi: 10.1088/1674-4926/32/10/104003.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3839 Times PDF downloads: 2667 Times Cited by: 0 Times

    History

    Received: 20 August 2015 Revised: 11 July 2011 Online: Published: 01 October 2011

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Liu Jin, Chen Yongguang, Tan Zhiliang, Yang Jie, Zhang Xijun, Wang Zhenxing. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge[J]. Journal of Semiconductors, 2011, 32(10): 104003. doi: 10.1088/1674-4926/32/10/104003 ****Liu J, Chen Y G, Tan Z L, Yang J, Zhang X J, Wang Z X. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge[J]. J. Semicond., 2011, 32(10): 104003. doi: 10.1088/1674-4926/32/10/104003.
      Citation:
      Liu Jin, Chen Yongguang, Tan Zhiliang, Yang Jie, Zhang Xijun, Wang Zhenxing. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge[J]. Journal of Semiconductors, 2011, 32(10): 104003. doi: 10.1088/1674-4926/32/10/104003 ****
      Liu J, Chen Y G, Tan Z L, Yang J, Zhang X J, Wang Z X. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge[J]. J. Semicond., 2011, 32(10): 104003. doi: 10.1088/1674-4926/32/10/104003.

      Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

      DOI: 10.1088/1674-4926/32/10/104003
      Funds:

      The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

      • Received Date: 2015-08-20
      • Accepted Date: 2011-04-20
      • Revised Date: 2011-07-11
      • Published Date: 2011-09-20

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return