
SEMICONDUCTOR PHYSICS
An Liping and Liu Nianhua
Abstract: The electronic and transport properties of embedded boron nitride (BN) nanodot superlattices of armchair graphene nanoribbons are studied by first-principles calculations. The band structure of the graphene superlattice strongly depends on the geometric shape and size of the BN nanodot, as well as the concentration of nanodots. The conduction bands and valence bands near the Fermi level are nearly symmetric, which is induced by electron-hole symmetry. When B and N atoms in the graphene superlattices with a triangular BN nanodot are exchanged, the valance bands and conduction bands are inverted with respect to the Fermi level due to electron-hole symmetry. In addition, the hybridization of π orbitals from C and redundant B atoms or N atoms leads to a localized band appearing near the Fermi level. Our results also show a series of resonant peaks appearing in the conductance. This strongly depends on the distance of the two BN nanodots and on the shape of the BN nanodot. Controlling these parameters might allow the modulation of the electronic response of the systems.
Key words: graphene nanoribbon
[1] | |
[2] | |
[3] | |
[4] | |
[5] | |
[6] | |
[7] | |
[8] | |
[9] | |
[10] | |
[11] | |
[12] | |
[13] | |
[14] | |
[15] | |
[16] |
1 |
Ahmad A. Ahmad, Qais M. Al-Bataineh, Ahmad B. Migdadi Journal of Semiconductors, 2024, 45(11): 112701. doi: 10.1088/1674-4926/24060019 |
2 |
Xuemin Zhang, Changling Yan, Jinghang Yang, Chao Pang, Yunzhen Yue, et al. Journal of Semiconductors, 2022, 43(6): 062804. doi: 10.1088/1674-4926/43/6/062804 |
3 |
Tian Sun, Weiliang Ma, Donghua Liu, Xiaozhi Bao, Babar Shabbir, et al. Journal of Semiconductors, 2020, 41(7): 072907. doi: 10.1088/1674-4926/41/7/072907 |
4 |
Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure Xiaowei Jiang Journal of Semiconductors, 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006 |
5 |
Endi Suhendi, Lilik Hasanah, Dadi Rusdiana, Fatimah A. Noor, Neny Kurniasih, et al. Journal of Semiconductors, 2019, 40(6): 062002. doi: 10.1088/1674-4926/40/6/062002 |
6 |
Ammonia sensing using arrays of silicon nanowires and graphene K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li Journal of Semiconductors, 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001 |
7 |
Graphene-based flexible and wearable electronics Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn Journal of Semiconductors, 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007 |
8 |
Ultrathin free-standing graphene oxide film based flexible touchless sensor Lin Liu, Yingyi Wang, Guanghui Li, Sujie Qin, Ting Zhang, et al. Journal of Semiconductors, 2018, 39(1): 013002. doi: 10.1088/1674-4926/39/1/013002 |
9 |
B. Shougaijam, R. Swain, C. Ngangbam, T.R. Lenka Journal of Semiconductors, 2017, 38(5): 053001. doi: 10.1088/1674-4926/38/5/053001 |
10 |
Improving the photocatalytic performance of TiO2 via hybridizing with graphene K S Divya, Athulya K Madhu, T U Umadevi, T Suprabha, P. Radhakrishnan Nair, et al. Journal of Semiconductors, 2017, 38(6): 063002. doi: 10.1088/1674-4926/38/6/063002 |
11 |
Tetsuya Shimogaki, Masahiro Takahashi, Masaaki Yamasaki, Taichi Fukuda, Mitsuhiro Higashihata, et al. Journal of Semiconductors, 2016, 37(2): 023001. doi: 10.1088/1674-4926/37/2/023001 |
12 |
Fabrication techniques and applications of flexible graphene-based electronic devices Luqi Tao, Danyang Wang, Song Jiang, Ying Liu, Qianyi Xie, et al. Journal of Semiconductors, 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001 |
13 |
Lara Valentic, Nima E. Gorji Journal of Semiconductors, 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012 |
14 |
Wei Wang, Gongshu Yue, Xiao Yang, Lu Zhang, Ting Zhang, et al. Journal of Semiconductors, 2014, 35(6): 064006. doi: 10.1088/1674-4926/35/6/064006 |
15 |
Hysteresis analysis of graphene transistor under repeated test and gate voltage stress Jie Yang, Kunpeng Jia, Yajuan Su, Yang Chen, Chao Zhao, et al. Journal of Semiconductors, 2014, 35(9): 094003. doi: 10.1088/1674-4926/35/9/094003 |
16 |
V.K. Dwivedi, P. Srivastava, G. Vijaya Prakash Journal of Semiconductors, 2013, 34(3): 033001. doi: 10.1088/1674-4926/34/3/033001 |
17 |
An Liping, Liu Nianhua Journal of Semiconductors, 2011, 32(5): 052001. doi: 10.1088/1674-4926/32/5/052001 |
18 |
Nanoscale strained-Si MOSFET physics and modeling approaches: a review Amit Chaudhry, J. N. Roy, Garima Joshi Journal of Semiconductors, 2010, 31(10): 104001. doi: 10.1088/1674-4926/31/10/104001 |
19 |
Fabrication and photoelectrical characteristics of ZnO nanowire field-effect transistors Fu Xiaojun, Zhang Haiying, Guo Changxin, Xu Jingbo, Li Ming, et al. Journal of Semiconductors, 2009, 30(8): 084002. doi: 10.1088/1674-4926/30/8/084002 |
20 |
Facile fabrication of UV photodetectors based on ZnO nanorod networks across trenched electrodes Li Yingying, Cheng Chuanwei, Dong Xiang, Gao Junshan, Zhang Haiqian, et al. Journal of Semiconductors, 2009, 30(6): 063004. doi: 10.1088/1674-4926/30/6/063004 |
Article views: 3976 Times PDF downloads: 2371 Times Cited by: 0 Times
Received: 20 August 2015 Revised: 16 May 2011 Online: Published: 01 September 2011
Citation: |
An Liping, Liu Nianhua. Electronic structures and transport properties of BN nanodot superlattices of armchair graphene nanoribbons[J]. Journal of Semiconductors, 2011, 32(9): 092002. doi: 10.1088/1674-4926/32/9/092002
****
An L P, Liu N H. Electronic structures and transport properties of BN nanodot superlattices of armchair graphene nanoribbons[J]. J. Semicond., 2011, 32(9): 092002. doi: 10.1088/1674-4926/32/9/092002.
|
[1] | |
[2] | |
[3] | |
[4] | |
[5] | |
[6] | |
[7] | |
[8] | |
[9] | |
[10] | |
[11] | |
[12] | |
[13] | |
[14] | |
[15] | |
[16] |
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2