Citation: |
Shujie Wu, Yonghai Chen, Xudong Qin, Hansong Gao, Jinling Yu, Laipan Zhu, Yuan Li, Kai Shi. Giant in-plane optical anisotropy of a-plane ZnO on r-plane sapphire[J]. Journal of Semiconductors, 2013, 34(12): 122003. doi: 10.1088/1674-4926/34/12/122003
****
S J Wu, Y H Chen, X D Qin, H S Gao, J L Yu, L P Zhu, Y Li, K Shi. Giant in-plane optical anisotropy of a-plane ZnO on r-plane sapphire[J]. J. Semicond., 2013, 34(12): 122003. doi: 10.1088/1674-4926/34/12/122003.
|
Giant in-plane optical anisotropy of a-plane ZnO on r-plane sapphire
DOI: 10.1088/1674-4926/34/12/122003
More Information
-
Abstract
We have measured the in-plane optical anisotropy (IPOA) of (1120) ZnO (a-plane) on (1012) sapphire (r-plane) by reflectance difference spectroscopy (RDS) at room temperature. Giant IPOA has been observed between the light polarized direction parallel and perpendicular to the c axis of ZnO, since the symmetry of a-plane is C2v. A sharp resonance has been observed near the fundamental band gap, which is induced by the polarization-depend band gap shift. The sharp line shape is attributed to the exciton transition. The spectra fitting and differential spectra indicate the polarization-depend band energies. The giant IPOA is possible enhanced by anisotropy strain along and perpendicular to the c axis in the a-plane. -
References
[1] Look D C. Recent advances in ZnO materials and devices. Mater Sci Eng B, 2001, 80:383 doi: 10.1016/S0921-5107(00)00604-8[2] Chen Y, Bagnall D M, Koh H, et al. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire:growth and characterization. J Appl Phys, 1998, 84:3192 doi: 10.1063/1.368595[3] Look D C, Reynolds D C, Hemsky J W. et al. Production and annealing of electron irradiation damage in ZnO. Appl Phys Lett, 1999, 75:811 doi: 10.1063/1.124521[4] Gil B, Lefebvre P, Bretagnon T, et al. Spin-exchange interaction in ZnO-based quantum wells. Phys Rev B, 2006, 74:153302 doi: 10.1103/PhysRevB.74.153302[5] Tabares G, Hierro A, Vinter B, et al. Polarization-sensitive Schottky photodiodes based on a-plane ZnO/ZnMgO multiple quantum-wells. Appl Phys Lett, 2011, 99:071108 doi: 10.1063/1.3624924[6] Gorla C R, Emanetoglu N W, Liang S, et al. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition. J Appl Phys, 1999, 85:2595 doi: 10.1063/1.369577[7] Chauveau J M, Vennegues P, Laugt M, et al. Interface structure and anisotropic strain relaxation of nonpolar wurtzite (1120) and (1010) orientations:ZnO epilayers grown on sapphire. J Appl Phys, 2008, 104:073535 doi: 10.1063/1.2996248[8] Cobet M, Cobet C, Wagner M R, et al. Polariton effects in the dielectric function of ZnO excitons obtained by ellipsometry. Appl Phys Lett, 2010, 96:031904 doi: 10.1063/1.3284656[9] Aspnes D E, Harbison J P, Studna A A, et al. Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs. J Vac Sci Technol A, 1988, 6:1327 doi: 10.1116/1.575694[10] Macdonald B F, Law J S, Cole R J, et al. Azimuth-dependent reflection anisotropy spectroscopy. J Appl Phys, 2003, 93:3320 doi: 10.1063/1.1544645[11] Rossow U, Goldhahn R, Fuhrmann D, et al. Reflectance difference spectroscopy RDS/RAS combined with spectroscopic ellipsometry for a quantitative analysis of optically anisotropic materials. Phys Status Solidi B, 2005, 242:2617 doi: 10.1002/(ISSN)1521-3951[12] Jellison G E, Boatner L A. Optical functions of uniaxial ZnO determined by generalized ellipsometry. Phys Rev B, 1998, 58:3586 doi: 10.1103/PhysRevB.58.3586[13] Le Toullec R, Piccioli N, Chervin J C. Optical properties of the band-edge exciton in GaSe crystals at 10 K. Phys Rev B, 1980, 22:6162 doi: 10.1103/PhysRevB.22.6162[14] Frederick F. Optical properties of solids. Academic Press New York, 1972 doi: 10.1119/1.1987434[15] Siah F, Yang Z, Tang Z K, et al. In-plane anisotropic strain of ZnO closely packed microcrystallites grown on tilted (0001) sapphire. J Appl Phys, 2000, 88:2480 doi: 10.1063/1.1287527[16] Chen Y H, Ye X L, Xu B, et al. Strong in-plane optical anisotropy of asymmetric (001) quantum wells. J Appl Phys, 2006, 99:096102 doi: 10.1063/1.2192150 -
Proportional views