Citation: |
Yu Zhou, Xinxing Li, Renbing Tan, Wei Xue, Yongdan Huang, Shitao Lou, Baoshun Zhang, Hua Qin. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor[J]. Journal of Semiconductors, 2013, 34(2): 022002. doi: 10.1088/1674-4926/34/2/022002
****
Y Zhou, X X Li, R B Tan, W Xue, Y D Huang, S T Lou, B S Zhang, H Qin. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor[J]. J. Semicond., 2013, 34(2): 022002. doi: 10.1088/1674-4926/34/2/022002.
|
Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor
DOI: 10.1088/1674-4926/34/2/022002
More Information
-
Abstract
In a grating-coupled high-electron-mobility transistor, weak terahertz emission with wavelength around 400 μm was observed by using a Fourier-transform spectrometer. The absolute terahertz emission power was extracted from a strong background blackbody emission by using a modulation technique. The power of terahertz emission is proportional to the drain-source current, while the power of blackbody emission has a distinct relation with the electrical power. The dependence on the drain-source bias and the gate voltage suggests that the terahertz emission is induced by accelerated electrons interacting with the grating. -
References
[1] Smith S J, Purcell E M. Visible light from localized surface charges moving across grating. Phys Rev, 1953, 92:1069[2] Tsimring S E. Electron beams and microwave vacuum electron-ics. New York:John Wiley & Sons, 2007[3] Mikhailov S A. Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems. Phys Rev B, 1998, 58:1517 doi: 10.1103/PhysRevB.58.1517[4] Tsui D C, Gornik E, Logan R A. Far infrared emission from plasma oscillations of Si inversion layers. Solid State Commun, 1980, 35:875 doi: 10.1016/0038-1098(80)91043-1[5] Gornik E, Christanell R, Weimann G, et al. Analysis of carrier distribution function through Smith-Purcell effect in GaAs/GaAlAs heterostructures. Solid-State Electron, 1988, 31:751 doi: 10.1016/0038-1101(88)90381-4[6] Gornik E, Schwarz R, Lindemann G, et al. Emission spectroscopy on two-dimensional systems. Surf Sci, 1980, 98:493 doi: 10.1016/0039-6028(80)90530-0[7] Wirner C, Kiener C, Boxleitner W, et al. Direct observation of the hot electron distribution function in GaAs/AlGaAs heterostructures. Phys Rev Lett, 1993, 70:2609 doi: 10.1103/PhysRevLett.70.2609[8] Hirakawa K, Yamanaka K, Grayson M, et al. Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As=GaAs heterojunctions. Appl Phys Lett, 1995, 67:2326 doi: 10.1063/1.114333[9] Otsuji T, Meziani Y M, Hanabe M, et al. Grating-bicoupled plasmon-resonant terahertz emitter fabricated with GaAs-based heterostructure material systems. Appl Phys Lett, 2006, 89:263502 doi: 10.1063/1.2410228[10] Otsuji T, Watanabe T, El Moutaouaki A, et al. Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-and hetero-structures. J Infrared Milli Terahz Waves, 2011, 32:629 doi: 10.1007/s10762-010-9714-0[11] Meziani Y M, Handa H, Knap W, et al. Room temperature terahertz emission from grating coupled two -dimensional plasmons. Appl Phys Lett, 2008, 92:201108 doi: 10.1063/1.2919097[12] Dyakonov M, Shur M. Shallow water analogy for a ballistic field effect transistor:new mechanism of plasma wave generation by dc current. Phys Rev Lett, 1993, 71:2465 doi: 10.1103/PhysRevLett.71.2465[13] Mikhailov S A. Design and theory of a graphene-based coherent terahertz emitter. arXiv:1203.3983v1(cond-mat.mes-hall), 2012 https://arxiv.org/abs/1203.3983v1 -
Proportional views