Citation: |
Shaoxi Wang, Mingxin Wang, Xiaoya Fan, Shengbing Zhang, Ru Han. A multivariate process capability index with a spatial coefficient[J]. Journal of Semiconductors, 2013, 34(2): 026001. doi: 10.1088/1674-4926/34/2/026001
****
S X Wang, M X Wang, X Y Fan, S B Zhang, R Han. A multivariate process capability index with a spatial coefficient[J]. J. Semicond., 2013, 34(2): 026001. doi: 10.1088/1674-4926/34/2/026001.
|
A multivariate process capability index with a spatial coefficient
DOI: 10.1088/1674-4926/34/2/026001
More Information
-
Abstract
After analyzing the multivariate Cpm method (Chan et al. 1991), this paper presents a spatial multivariate process capability index (PCI) method, which can solve a multivariate off-centered case and may provide references for assuring and improving process quality level while achieving an overall evaluation of process quality. Examples for calculating multivariate PCI are given and the experimental results show that the systematic method presented is effective and actual.-
Keywords:
- process,
- process capability index,
- multivariate,
- off-center
-
References
[1] Kane V E. Process capability indices. Journal of Quality Technology, 1986, 18(1):41 http://www.stats.uwaterloo.ca/~shsteine/papers/cap.pdf[2] Chan L K, Cheng S W, Spring F A. A new measure of process capability:Cpm. Journal of Quality Technology, 1988, 20:162[3] Choi B C, Owen D B. A study of a new capability index. Communications in Statistic:Theory and Methods, 1990, 19:1231 doi: 10.1080/03610929008830258[4] Boyles R A. The Taguchi capability index. Journal of Quality Technology, 1991, 23:331[5] Pearn W L, Kotz S, Johnson N L. Distributional and inferential properties of process capability indices. Journal of Quality Technology, 1992, 24:216 http://asq.org/qic/display-item/index.html?item=11339[6] Kotz S, Johson N. Process capability indices——a review. Journal of Quality Technology, 2002, 34(1):2 http://connection.ebscohost.com/c/articles/5930885/process-capability-indices-review-1992-2000[7] Taam W, Subbaiah P, Liddy J W. A note on multivariate capability indices. J Appl Statistics, 1993, 20(3):339 doi: 10.1080/02664769300000035[8] Chen H. A multivariate process capability index over a rectangular solid tolerance zone. Statistica Sinica, 1994, 4:749 http://d.wanfangdata.com.cn/ExternalResource-hgzdhjyb201012024%5e3.aspx[9] Pearn W L, Kotz W S, Johnson N L. Distributional and inferen-tial properties of process capability indices. Journal of Quality Technology, 1992, 24:216 https://ir.nctu.edu.tw/bitstream/11536/38879/11/381611.pdf[10] Wang F K, Du T C. Using principal component analysis in process performance for multivariate data. Omega, 2000, 28:185 doi: 10.1016/S0305-0483(99)00036-5[11] Chan L K, Cheng S W, Spiring F A. A multivariate measure of process capability. Journal of Modeling and Simulation, 1991, 11:1 http://www.academia.edu/33527763/A_Multivariate_Measure_of_Process_Capability[12] Wang S, Arthur Y. A spatial multivariate process capability index. IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Macao, 2010:1443 http://d.wanfangdata.com.cn/Periodical_bdtxb201302023.aspx[13] Wang Shaoxi, Wang Danghui. A multivariate process capability index model system. Journal of Semiconductors, 2011, 32(1):0160011 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=10041402&flag=1 -
Proportional views