Processing math: 100%
J. Semicond. > 2014, Volume 35 > Issue 1 > 015009

SEMICONDUCTOR INTEGRATED CIRCUITS

A low-leakage and NBTI-mitigated N-type domino logic

Huaguo Liang1, Hui Xu2, 3, , Zhengfeng Huang1 and Maoxiang Yi1

+ Author Affiliations

 Corresponding author: Xu Hui, Email:xuhui@aust.edu.cn

DOI: 10.1088/1674-4926/35/1/015009

PDF

Abstract: NBTI-induced transistor aging has become a prominent factor affecting the reliability of circuits. Reducing leakage consumption is one of the major design goals. Domino logic circuits are applied extensively in high-performance integrated circuits. A circuit technique for mitigating NBTI-induced degradation and reduce standby leakage current is presented in this paper. Two transistors are added to the standard domino circuit to pull both the dynamic node and the output up to VDD, which puts both the keeper and the inverter pMOS transistor into recovery mode in standby mode. Due to the stack effect, leakage current is reduced by the all-0 input vector and the added transistors. Experimental results reveal up to 33% NBTI-induced degradation reduction and up to 79% leakage current reduction.

Key words: domino logic circuitnegative bias temperature instabilityleakage currentstandby mode



[1]
Kursun V, Friedman E G. Sleep switch dual threshold voltage domino logic with reduced standby leakage current. IEEE Trans Very Large Scale Integration (VLSI) Syst, 2004, 12(5):485 doi: 10.1109/TVLSI.2004.826198
[2]
Hyungwoo L, Heejung S, Seungho J, et al. Statistical leakage estimation for DRAM circuits. Proc 2nd Asia Symposium on Quality Electronic Design (ASQED), 2010:243
[3]
Hui X, Huaguo L, Zhengfeng H, et al. An aging tolerant Domino gate. J Circuits Syst, 2012, 17(5):91 http://ieeexplore.ieee.org/document/7494216/
[4]
Kaffashian M H, Lotfi R, Mafinezhad K, et al. Impact of NBTI on performance of domino logic circuits in nano-scale CMOS. Microelectron J, 2011, (32):1327 doi: 10.1007/978-1-4614-0818-5_6
[5]
Kaffashian M H, Lotfi R, Mafinezhadand K, et al. An optimization method for NBTI-aware design of Domino logic circuits in nano-scale CMOS. Electron Express, 2011, 81:406 https://www.jstage.jst.go.jp/article/elex/8/19/8_19_1640/_article
[6]
Yu W, Hong L, Ku H, et al. Temperature-aware NBTI modeling and the impact of input vector control on performance degradation. Proc Design, Automation & Test in Europe Conference & Exhibition, 2007:1 http://www.nsfc.gov.cn/Portals/0/fj/fj20170118_03.xls
[7]
Feng Chaochao, Chen Xun, Yi Xiaofei, et al. An improved high fan-in Domino circuit for high performance microprocessors. Journal of Semiconductors, 2008, 29(9):1740 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=08011602&flag=1
[8]
Wang Jinhui, Gong Na, Hou Ligang, et al. Charge self-compensation technology research for low power and high performance Domino circuits. Journal of Semiconductors, 2008, 29(7):1412 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=08010402&flag=1
[9]
Borkar S. Circuit techniques for subthreshold leakage avoidance, control and tolerance. IEDM Technical Digest, IEEE International Electron Devices Meeting, 2004:421
[10]
Anis M H, Allam M W, Elmasry M I. Energy-efficient noise-tolerant dynamic styles for scaled-down CMOS and MTCMOS technologies. IEEE Trans Very Large Scale Integration Syst, 2002, 10(2):71 doi: 10.1109/92.994977
[11]
Song J, Yinhe H, Huawei L, et al. On predicting circuit aging via considering actual workload. Journal of Computer-Aided Design & Computer Graphics, 2010, (12):2242 http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJF201012028.htm
[12]
Wu K C, Marculescu D. Joint logic restructuring and pin reordering against NBTI-induced performance degradation. Proc Design, Automation & Test in Europe Conference & Exhibition, 2009:75 https://core.ac.uk/display/21196869
[13]
Wang J, Wu W, Lei Z, et al. Power and delay estimation for dynamic OR gates with header and footer transistor based on wavelet neural networks. 10th International Conference on Ultimate Integration of Silicon, 2009:241 doi: 10.1007/978-3-319-18802-7_3
[14]
Hua C H, Hwang W, Chen C K. Noise-tolerant XOR-based conditional keeper for high fan-in dynamic circuits. IEEE International Symposium on Circuits and Systems, 2005:444
[15]
Bhardwaj S, Wenping W, Vattikonda R, et al. Predictive modeling of the NBTI effect for reliable design. Proc Custom Integrated Circuits Conference, 2006:189 doi: 10.1007/978-3-642-36157-9_16
[16]
Wang W, Wei Z, Yang S, et al. An efficient method to identify critical gates under circuit aging. IEEE/ACM International Conference on Computer-Aided Design, 2007:735 doi: 10.1007/s10836-013-5358-z
[17]
Wu K C, Marculescu D. Aging-aware timing analysis and optimization considering path sensitization. Proc Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011, 2011:1 https://www.computer.org/csdl/proceedings/date/2011/4208/00/05763249.pdf
[18]
Predictive technology model (PTM). http://www.eas.asu.edu/ptm/
[19]
Wang Y, Chen X, Wang W, et al. Leakage power and circuit aging cooptimization by gate replacement techniques. IEEE Trans Very Large Scale Integration Syst, 2011, 19(4):615 doi: 10.1109/TVLSI.2009.2037637
[20]
Siddiqua T, Gurumurthi S. Recovery boosting:a technique to enhance NBTI recovery in SRAM arrays. IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2010:393 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.294.9741
[21]
Vattikonda R, Wang W, Yu C. Modeling and minimization of PMOS NBTI effect for robust nanometer design. 43rd ACM/IEEE Design Automation Conference, 2006:1047 https://asu.pure.elsevier.com/en/publications/modeling-and-minimization-of-pmos-nbti-effect-for-robust-nanomete
[22]
Wang Y, Chen X, Wang W, et al. On the efficacy of input Vector control to mitigate NBTI effects and leakage power. International Symposium on Quality of Electronic Design, ISQED, 2009:19
[23]
Bild D R, Bok G E, Dick R P. Minimization of NBTI performance degradation using internal node control. Proc Design, Automation & Test in Europe Conference & Exhibition, 2009:148
[24]
Lin Y, Gang Q. A combined gate replacement and input vector control approach for leakage current reduction. IEEE Trans Very Large Scale Integration (VLSI) Syst, 2006, 14(2):173 doi: 10.1109/TVLSI.2005.863747
[25]
Paul B C, Kunhyuk K, Kufluoglu H, et al. Temporal performance degradation under NBTI:estimation and design for improved reliability of nanoscale circuits. Proc Design, Automation and Test in Europe, 2006:780 doi: 10.1145/1131703
[26]
Gong N, Tang G, Wang J, et al. Novel adaptive keeper LBL technique for low power and high performance register files. IEEE International SOC Conference (SOCC), 2011:30 http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6076821
[27]
Eriksson H, Larsson-Edefors P, Henriksson T, et al. Full-custom vs. standard-cell design flow:an adder case study. Proceedings of the Asia and South Pacific Design Automation Conference, Kitakyushu, Japan, 2003:507
[28]
Eleyan N N, Ken L, Kamal M, et al. Semi-custom design flow:leveraging place and route tools in custom circuit design. IEEE International Conference on IC Design and Technology, 2009:143
[29]
Lin I C, Lin C H, Li K H. Leakage and aging optimization using transmission gate-based technique. IEEE Trans Computer-Aided Design of Integrated Circuits and Systems, 2013, 32(1):87 doi: 10.1109/TCAD.2012.2214478
[30]
Abdollahi A, Fallah F, Pedram M. Leakage current reduction in CMOS VLSI circuits by input vector control. IEEE Trans Very Large Scale Integration (VLSI) Syst, 2004, 12(2):140 doi: 10.1109/TVLSI.2003.821546
[31]
Khandelwal V, Srivastava A. Leakage control through fine-grained placement and sizing of sleep transistors. IEEE Trans Computer-Aided Design of Integrated Circuits and Systems, 2007, 26(7):1246 doi: 10.1109/TCAD.2006.888282
Fig. 1.  Standard n-type domino logic circuit.

Fig. 2.  Presented domino OR gate.

Fig. 3.  Presented 16-bit domino MUX.

Fig. 4.  NBTI-induced degradation improvement under different RAS.

Fig. 5.  ΔVth during dynamic NBTI[21].

Fig. 6.  Leakage current for different input vectors.

Table 1.   Short-term cycle-by-cycle model of degradation.

Table 2.   Degradation of different circuits.

Table 3.   Area overhead.

Table 4.   Normalized dynamic power overhead.

[1]
Kursun V, Friedman E G. Sleep switch dual threshold voltage domino logic with reduced standby leakage current. IEEE Trans Very Large Scale Integration (VLSI) Syst, 2004, 12(5):485 doi: 10.1109/TVLSI.2004.826198
[2]
Hyungwoo L, Heejung S, Seungho J, et al. Statistical leakage estimation for DRAM circuits. Proc 2nd Asia Symposium on Quality Electronic Design (ASQED), 2010:243
[3]
Hui X, Huaguo L, Zhengfeng H, et al. An aging tolerant Domino gate. J Circuits Syst, 2012, 17(5):91 http://ieeexplore.ieee.org/document/7494216/
[4]
Kaffashian M H, Lotfi R, Mafinezhad K, et al. Impact of NBTI on performance of domino logic circuits in nano-scale CMOS. Microelectron J, 2011, (32):1327 doi: 10.1007/978-1-4614-0818-5_6
[5]
Kaffashian M H, Lotfi R, Mafinezhadand K, et al. An optimization method for NBTI-aware design of Domino logic circuits in nano-scale CMOS. Electron Express, 2011, 81:406 https://www.jstage.jst.go.jp/article/elex/8/19/8_19_1640/_article
[6]
Yu W, Hong L, Ku H, et al. Temperature-aware NBTI modeling and the impact of input vector control on performance degradation. Proc Design, Automation & Test in Europe Conference & Exhibition, 2007:1 http://www.nsfc.gov.cn/Portals/0/fj/fj20170118_03.xls
[7]
Feng Chaochao, Chen Xun, Yi Xiaofei, et al. An improved high fan-in Domino circuit for high performance microprocessors. Journal of Semiconductors, 2008, 29(9):1740 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=08011602&flag=1
[8]
Wang Jinhui, Gong Na, Hou Ligang, et al. Charge self-compensation technology research for low power and high performance Domino circuits. Journal of Semiconductors, 2008, 29(7):1412 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=08010402&flag=1
[9]
Borkar S. Circuit techniques for subthreshold leakage avoidance, control and tolerance. IEDM Technical Digest, IEEE International Electron Devices Meeting, 2004:421
[10]
Anis M H, Allam M W, Elmasry M I. Energy-efficient noise-tolerant dynamic styles for scaled-down CMOS and MTCMOS technologies. IEEE Trans Very Large Scale Integration Syst, 2002, 10(2):71 doi: 10.1109/92.994977
[11]
Song J, Yinhe H, Huawei L, et al. On predicting circuit aging via considering actual workload. Journal of Computer-Aided Design & Computer Graphics, 2010, (12):2242 http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJF201012028.htm
[12]
Wu K C, Marculescu D. Joint logic restructuring and pin reordering against NBTI-induced performance degradation. Proc Design, Automation & Test in Europe Conference & Exhibition, 2009:75 https://core.ac.uk/display/21196869
[13]
Wang J, Wu W, Lei Z, et al. Power and delay estimation for dynamic OR gates with header and footer transistor based on wavelet neural networks. 10th International Conference on Ultimate Integration of Silicon, 2009:241 doi: 10.1007/978-3-319-18802-7_3
[14]
Hua C H, Hwang W, Chen C K. Noise-tolerant XOR-based conditional keeper for high fan-in dynamic circuits. IEEE International Symposium on Circuits and Systems, 2005:444
[15]
Bhardwaj S, Wenping W, Vattikonda R, et al. Predictive modeling of the NBTI effect for reliable design. Proc Custom Integrated Circuits Conference, 2006:189 doi: 10.1007/978-3-642-36157-9_16
[16]
Wang W, Wei Z, Yang S, et al. An efficient method to identify critical gates under circuit aging. IEEE/ACM International Conference on Computer-Aided Design, 2007:735 doi: 10.1007/s10836-013-5358-z
[17]
Wu K C, Marculescu D. Aging-aware timing analysis and optimization considering path sensitization. Proc Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011, 2011:1 https://www.computer.org/csdl/proceedings/date/2011/4208/00/05763249.pdf
[18]
Predictive technology model (PTM). http://www.eas.asu.edu/ptm/
[19]
Wang Y, Chen X, Wang W, et al. Leakage power and circuit aging cooptimization by gate replacement techniques. IEEE Trans Very Large Scale Integration Syst, 2011, 19(4):615 doi: 10.1109/TVLSI.2009.2037637
[20]
Siddiqua T, Gurumurthi S. Recovery boosting:a technique to enhance NBTI recovery in SRAM arrays. IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2010:393 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.294.9741
[21]
Vattikonda R, Wang W, Yu C. Modeling and minimization of PMOS NBTI effect for robust nanometer design. 43rd ACM/IEEE Design Automation Conference, 2006:1047 https://asu.pure.elsevier.com/en/publications/modeling-and-minimization-of-pmos-nbti-effect-for-robust-nanomete
[22]
Wang Y, Chen X, Wang W, et al. On the efficacy of input Vector control to mitigate NBTI effects and leakage power. International Symposium on Quality of Electronic Design, ISQED, 2009:19
[23]
Bild D R, Bok G E, Dick R P. Minimization of NBTI performance degradation using internal node control. Proc Design, Automation & Test in Europe Conference & Exhibition, 2009:148
[24]
Lin Y, Gang Q. A combined gate replacement and input vector control approach for leakage current reduction. IEEE Trans Very Large Scale Integration (VLSI) Syst, 2006, 14(2):173 doi: 10.1109/TVLSI.2005.863747
[25]
Paul B C, Kunhyuk K, Kufluoglu H, et al. Temporal performance degradation under NBTI:estimation and design for improved reliability of nanoscale circuits. Proc Design, Automation and Test in Europe, 2006:780 doi: 10.1145/1131703
[26]
Gong N, Tang G, Wang J, et al. Novel adaptive keeper LBL technique for low power and high performance register files. IEEE International SOC Conference (SOCC), 2011:30 http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6076821
[27]
Eriksson H, Larsson-Edefors P, Henriksson T, et al. Full-custom vs. standard-cell design flow:an adder case study. Proceedings of the Asia and South Pacific Design Automation Conference, Kitakyushu, Japan, 2003:507
[28]
Eleyan N N, Ken L, Kamal M, et al. Semi-custom design flow:leveraging place and route tools in custom circuit design. IEEE International Conference on IC Design and Technology, 2009:143
[29]
Lin I C, Lin C H, Li K H. Leakage and aging optimization using transmission gate-based technique. IEEE Trans Computer-Aided Design of Integrated Circuits and Systems, 2013, 32(1):87 doi: 10.1109/TCAD.2012.2214478
[30]
Abdollahi A, Fallah F, Pedram M. Leakage current reduction in CMOS VLSI circuits by input vector control. IEEE Trans Very Large Scale Integration (VLSI) Syst, 2004, 12(2):140 doi: 10.1109/TVLSI.2003.821546
[31]
Khandelwal V, Srivastava A. Leakage control through fine-grained placement and sizing of sleep transistors. IEEE Trans Computer-Aided Design of Integrated Circuits and Systems, 2007, 26(7):1246 doi: 10.1109/TCAD.2006.888282
1

High Curie temperature ferromagnetism and high hole mobility in tensile strained Mn-doped SiGe thin films

Jianhua Zhao

Journal of Semiconductors, 2020, 41(8): 080201. doi: 10.1088/1674-4926/41/8/080201

2

Application of source biasing technique for energy efficient DECODER circuit design: memory array application

Neha Gupta, Priyanka Parihar, Vaibhav Neema

Journal of Semiconductors, 2018, 39(4): 045001. doi: 10.1088/1674-4926/39/4/045001

3

Effect of ultrasound on reverse leakage current of silicon Schottky barrier structure

O.Ya Olikh, K.V. Voitenko, R.M. Burbelo, JaM. Olikh

Journal of Semiconductors, 2016, 37(12): 122002. doi: 10.1088/1674-4926/37/12/122002

4

A low leakage power-rail ESD detection circuit with a modified RC network for a 90-nm CMOS process

Zhaonian Yang, Hongxia Liu, Shulong Wang

Journal of Semiconductors, 2013, 34(4): 045010. doi: 10.1088/1674-4926/34/4/045010

5

Fluorine-plasma surface treatment for gate forward leakage current reduction in AlGaN/GaN HEMTs

Wanjun Chen, Jing Zhang, Bo Zhang, Kevin Jing Chen

Journal of Semiconductors, 2013, 34(2): 024003. doi: 10.1088/1674-4926/34/2/024003

6

A fuzzy-logic-based approach to accurate modeling of a double gate MOSFETfor nanoelectronic circuit design

F. Djeffal, A. Ferdi, M. Chahdi

Journal of Semiconductors, 2012, 33(9): 094001. doi: 10.1088/1674-4926/33/9/094001

7

Gate leakage current reduction in IP3 SRAM cells at 45 nm CMOS technology for multimedia applications

R. K. Singh, Neeraj Kr. Shukla, Manisha Pattanaik

Journal of Semiconductors, 2012, 33(5): 055001. doi: 10.1088/1674-4926/33/5/055001

8

A 200 mV low leakage current subthreshold SRAM bitcell in a 130 nm CMOS process

Bai Na, Lü Baitao

Journal of Semiconductors, 2012, 33(6): 065008. doi: 10.1088/1674-4926/33/6/065008

9

A 2.5-Gb/s fully-integrated, low-power clock and recovery circuit in 0.18-μm CMOS

Zhang Changchun, Wang Zhigong, Shi Si, Guo Yufeng

Journal of Semiconductors, 2010, 31(3): 035007. doi: 10.1088/1674-4926/31/3/035007

10

A novel CMOS charge-pump circuit with current mode control 110 mA at 2.7 V for telecommunication systems

Salahddine Krit, Hassan Qjidaa, Imad El Affar, Yafrah Khadija, Ziani Messghati, et al.

Journal of Semiconductors, 2010, 31(4): 045001. doi: 10.1088/1674-4926/31/4/045001

11

Negative bias temperature instability induced single event transient pulse narrowing and broadening

Chen Jianjun, Chen Shuming, Liang Bin, Liu Biwei

Journal of Semiconductors, 2010, 31(12): 124004. doi: 10.1088/1674-4926/31/12/124004

12

Low-power CMOS fully-folding ADC with a mixed-averaging distributed T/H circuit

Liu Zhen, Jia Song, Wang Yuan, Ji Lijiu, Zhang Xing, et al.

Journal of Semiconductors, 2009, 30(12): 125013. doi: 10.1088/1674-4926/30/12/125013

13

A novel on-chip high to low voltage power conversion circuit

Wang Hui, Wang Songlin, Lai Xinquan, Ye Qiang, Mou Zaixin, et al.

Journal of Semiconductors, 2009, 30(3): 035008. doi: 10.1088/1674-4926/30/3/035008

14

A 2.4-GHz SiGe HBT power amplifier with bias current controlling circuit

Peng Yanjun, Song Jiayou, Wang Zhigong, Tsang K F

Journal of Semiconductors, 2009, 30(5): 055008. doi: 10.1088/1674-4926/30/5/055008

15

Ternary logic circuit design based on single electron transistors

Wu Gang, Cai Li, Li Qin

Journal of Semiconductors, 2009, 30(2): 025011. doi: 10.1088/1674-4926/30/2/025011

16

Accurate and fast table look-up models for leakage current analysis in 65 nm CMOS technology

Xue Jiying, Li Tao, Yu Zhiping

Journal of Semiconductors, 2009, 30(2): 024004. doi: 10.1088/1674-4926/30/2/024004

17

Temperature and Process Variations Aware Dual Threshold Voltage Footed Domino Circuits Leakage Management

Gong Na, Wang Jinhui, Guo Baozeng, Pang Jiao

Journal of Semiconductors, 2008, 29(12): 2364-2371.

18

Parameter Extraction for 2-π Equivalent Circuit Modelof RF CMOS Spiral Inductors

Gao Wei, Yu Zhiping

Chinese Journal of Semiconductors , 2006, 27(4): 667-673.

19

Bias Current Compensation Method with 41.4% Standard Deviation Reduction to MOSFET Transconductance in CMOS Circuits

Mao Xiaojian, Yang Huazhong, Wang Hui

Chinese Journal of Semiconductors , 2006, 27(5): 783-786.

20

Designing Leakage-Tolerant and Noise-Immune Enhanced Low Power Wide OR Dominos in Sub-70nm CMOS Technologies

Guo Baozeng, Gong Na, Wang Jinhui

Chinese Journal of Semiconductors , 2006, 27(5): 804-811.

  • Search

    Advanced Search >>

    GET CITATION

    Huaguo Liang, Hui Xu, Zhengfeng Huang, Maoxiang Yi. A low-leakage and NBTI-mitigated N-type domino logic[J]. Journal of Semiconductors, 2014, 35(1): 015009. doi: 10.1088/1674-4926/35/1/015009
    H G Liang, H Xu, Z F Huang, M X Yi. A low-leakage and NBTI-mitigated N-type domino logic[J]. J. Semicond., 2014, 35(1): 015009. doi: 10.1088/1674-4926/35/1/015009.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2467 Times PDF downloads: 19 Times Cited by: 0 Times

    History

    Received: 22 May 2013 Revised: 24 July 2013 Online: Published: 01 January 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Huaguo Liang, Hui Xu, Zhengfeng Huang, Maoxiang Yi. A low-leakage and NBTI-mitigated N-type domino logic[J]. Journal of Semiconductors, 2014, 35(1): 015009. doi: 10.1088/1674-4926/35/1/015009 ****H G Liang, H Xu, Z F Huang, M X Yi. A low-leakage and NBTI-mitigated N-type domino logic[J]. J. Semicond., 2014, 35(1): 015009. doi: 10.1088/1674-4926/35/1/015009.
      Citation:
      Huaguo Liang, Hui Xu, Zhengfeng Huang, Maoxiang Yi. A low-leakage and NBTI-mitigated N-type domino logic[J]. Journal of Semiconductors, 2014, 35(1): 015009. doi: 10.1088/1674-4926/35/1/015009 ****
      H G Liang, H Xu, Z F Huang, M X Yi. A low-leakage and NBTI-mitigated N-type domino logic[J]. J. Semicond., 2014, 35(1): 015009. doi: 10.1088/1674-4926/35/1/015009.

      A low-leakage and NBTI-mitigated N-type domino logic

      DOI: 10.1088/1674-4926/35/1/015009
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos.61274036, 61106038, 61371025) and the Doctoral Fund of Ministry of Education of China (No.20110111120012)

      the National Natural Science Foundation of China Nos.61371025

      the National Natural Science Foundation of China Nos.61274036

      the Doctoral Fund of Ministry of Education of China No.20110111120012

      the National Natural Science Foundation of China Nos.61106038

      More Information
      • Corresponding author: Xu Hui, Email:xuhui@aust.edu.cn
      • Received Date: 2013-05-22
      • Revised Date: 2013-07-24
      • Published Date: 2014-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return