Citation: |
Hongqing Dai, Junming An, Yue Wang, Jiashun Zhang, Liangliang Wang, Hongjie Wang, Jianguang Li, Yuanda Wu, Fei Zhong, Qiang Zha. Monolithic integration of a silica-based 16-channel VMUX/VDMUX on quartz substrate[J]. Journal of Semiconductors, 2014, 35(10): 104010. doi: 10.1088/1674-4926/35/10/104010
****
H Q Dai, J M An, Y Wang, J S Zhang, L L Wang, H J Wang, J G Li, Yuanda Wu and A Wu, F Zhong, Q Zha. Monolithic integration of a silica-based 16-channel VMUX/VDMUX on quartz substrate[J]. J. Semicond., 2014, 35(10): 104010. doi: 10.1088/1674-4926/35/10/104010.
|
Monolithic integration of a silica-based 16-channel VMUX/VDMUX on quartz substrate
DOI: 10.1088/1674-4926/35/10/104010
More Information
-
Abstract
A monolithic integrated variable attenuator multiplexer/demultiplexer is demonstrated. It is composed of a 16-channel 200 GHz silica-based arrayed waveguide grating and an array of Mach-Zehnder interferometer thermo-optic variable optical attenuators. The integrated device is fabricated on a quartz substrate, which eliminates the process of depositing the undercladding layer and reduces the power consumption compared with a device fabricated on a silicon substrate. The insertion loss and crosstalk of the integrated device are -5 dB and less than -22 dB, respectively. The power consumption is only 110 mW at the attenuation of 20 dB per channel.-
Keywords:
- monolithic integration,
- quartz substrate,
- VMUX/VDMUX,
- AWG,
- thermo-optic VOA
-
References
[1] Nishi H, Tsuchizawa T, Watanabe T, et al. Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structure. Appl Phys Express, 2010, 3(10):100203 http://cn.bing.com/academic/profile?id=fd4958803ad000c5d6591fa81a72e3e7&encoded=0&v=paper_preview&mkt=zh-cn[2] Abe M. Silica-based waveguide devices for photonic networks. Journal of the Ceramic Society of Japan, 2008, 116(10):1063 http://cn.bing.com/academic/profile?id=a50670c020402ea9e59e27cc1ee82e93&encoded=0&v=paper_preview&mkt=zh-cn[3] Kitoh T, Wakamiya M, Atsugi, et al. Recent progress on arrayed-waveguide grating multi/demultiplexers based on silica planar lightwave circuits. Proc SPIE, 2008, 7135:713503 doi: 10.1117/12.803090[4] Pan Pan, An Junming, Wang Liangliang, et al. Design and fabrication of an InP arrayed waveguide grating for monolithic PICs. Journal of Semiconductors, 2012, 33(7):074010 doi: 10.1088/1674-4926/33/7/074010[5] Feng D Z, Feng N N, Kung C C, et al. 30 GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide. Opt Express, 2011, 19(8):7062 doi: 10.1364/OE.19.007062[6] He Yuejiao, Fang Qing, Xin Hongli, et al. A low power consumption SOI-based thermo-optic variable optical attenuator. Chinese Journal of Semiconductors, 2005, 22(13):204 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=1435237&filter%3DAND%28p_IS_Number%3A30918%29[7] Tsuchizawa T, Yamada K, Watanabe T, et al. Monolithic Integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications. IEEE J Sel Topics Quantum Electron, 2011, 17(3):516 doi: 10.1109/JSTQE.2010.2089430[8] Feng D Z, Feng N N, Kung C C, et al. Compact single-chip VMUX/VDMUX on the silicon-on-insulator platform. Opt Express, 2011, 19(7):6125 doi: 10.1364/OE.19.006125[9] Yamada K, Tsuchizawa T, Watanabe T, et al. Silicon photonic devices and their integration technology. Optical Fiber Communication Conference, California, 2011[10] Fang Q, Chen P, Xin H L, et al. Low power-consumption and high response frequency thermo-optic variable optical attenuators based on silicon-on-insulator materials. Chin Phys Lett, 2005, 22(6):1452 doi: 10.1088/0256-307X/22/6/043[11] Qu P F, Chen W Y, Li F M, et al. Analysis and design of thermo-optical variable optical attenuator using three-waveguide directional couplers based on SOI. Opt Express, 2008, 16(25):20334 doi: 10.1364/OE.16.020334 -
Proportional views