Citation: |
Qiuli Li, Yao Qian, Danzhu Lü, Zhiliang Hong. VCCS controlled LDO with small on-chip capacitor[J]. Journal of Semiconductors, 2014, 35(11): 115011. doi: 10.1088/1674-4926/35/11/115011
****
Q L Li, Y Qian, D Lü, Z L Hong. VCCS controlled LDO with small on-chip capacitor[J]. J. Semicond., 2014, 35(11): 115011. doi: 10.1088/1674-4926/35/11/115011.
|
VCCS controlled LDO with small on-chip capacitor
DOI: 10.1088/1674-4926/35/11/115011
More Information
-
Abstract
A stable LDO using VCCS (voltage control current source) is presented. The LDO is designed and implemented on GF 2P4M 0.35 μm CMOS technology. Compared with a previous compensation scheme, VCCS can implement a real stable LDO with a small on-chip capacitor of 1 pF, whose stability is not affected by the variable ESR (equivalent series resistance) of the output capacitor. The unit gain frequency of the LDO loop can achieve 1.5 MHz, improving the transient response. The PSR of the LDO is larger than 45 dB within 0-40 kHz. The static current of the LDO at heavy load of 100 mA is 57 μA and the dropout voltage of the LDO is 150 mV. Experimental results show that a setting time of 10 μs is achieved, and the variation of output voltage is smaller than 35 mV for a 100 mA load step in transient response of the LDO.-
Keywords:
- LDO,
- VCCS,
- small on-chip capacitor,
- frequency compensation,
- LDO stability
-
References
[1] Wang Yi, He Le'nian, Yan Xiaolang. A 30 nA temperature independent CMOS current reference and its application in an LDO. Chinese Journal of Semiconductors, 2006, 27(9):1657 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=06021403&flag=1[2] Ma Zhuo, Guo Yang, Duan Zhikui. A fast transient response low dropout regulator with current control methodology. Journal of Semiconductors, 2011, 32(8):085007 doi: 10.1088/1674-4926/32/8/085007[3] Rincon-Mora G A, Allen P E. A low-voltage, low quiescent current, low drop-out regulator. IEEE J Solid-State Circuits, 1988, 33(1):36 http://ieeexplore.ieee.org/document/654935/authors[4] Al-Shyoukh M, Lee H, Perez R. A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation. IEEE J Solid-State Circuits, 2007, 42(8):1732 doi: 10.1109/JSSC.2007.900281[5] Oh W, Bakkaloglu B. A CMOS low-dropout regulator with current-mode feedback buffer amplifier. IEEE Trans Circuits Syst Ⅱ, 2007, 54(10):922 doi: 10.1109/TCSII.2007.901621[6] Garimella A, Rashid W, Furth P M. Reverse nested Miller Compensation using current buffers in a three-stage LDO. IEEE Trans Circ uits Syst Ⅱ, 2010, 57(2):250 http://ieeexplore.ieee.org/document/5438730/?arnumber=5438730&punumber%3D8920[7] Chava C K, Silva-Martínez J. A frequency compensation scheme for LDO voltage regulators. IEEE Trans Circuits Syst I, 2004, 51(2):1041 http://ieeexplore.ieee.org/document/1304961/keywords[8] Razavi B. Design of analog CMOS and integrated circuits. Xi'an:Xi'an Jiaotong University Press, 2008[9] Rabaey J M, Chandrakasan A, Nikolic B. Digital integrated circuits-a design perspective. 2nd ed. Being:Publ ishing House of Electronics Industry, 2008[10] El-Nozahi M, Amer A, Torres J. High PSR low drop-out regulator with feed-forward ripple cancellation technique. IEEE J Solid-State Circuits, 2010, 45(5):565 http://ieeexplore.ieee.org/document/5419190/?reload=true&tp=&arnumber=5419190&queryText%3DHigh%20PSR%20Low%20Drop-Out%20Regulator%20With%20Feed-Forward%20Ripple%20Cancellation%20Technique -
Proportional views