Citation: |
Tingting Chen, Bing Liu, Xiujian Chou, Jun Liu, Chenyang Xue, Wendong Zhang. Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics[J]. Journal of Semiconductors, 2014, 35(3): 033002. doi: 10.1088/1674-4926/35/3/033002
****
T T Chen, B Liu, X J Chou, J Liu, C Y Xue, W D Zhang. Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics[J]. J. Semicond., 2014, 35(3): 033002. doi: 10.1088/1674-4926/35/3/033002.
|
Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics
DOI: 10.1088/1674-4926/35/3/033002
More Information
-
Abstract
Pb0.97La0.02(Zr0.75Sn0.25-xTix)O3 (x=0.10, 0.105, 0.11) (PLZST) antiferroelectric ceramics with highly preferred-(110) orientation were successfully fabricated via the conventional solid-state reaction method. The antiferroelectric nature of PLZST ceramics induced by electric field was demonstrated by the dielectric constant-temperature (D-T) and the polarization-electric field (P-E) measurement. Typical phase transition from ferroelectric (FE) to antiferroelectric (AFE), and then to paraelectric (PE) is obtained. The results indicate that the phase transition behavior is suppressed with increasing of x, and Tc is remarkably shifted to higher temperature of 168℃, 170℃ and 174℃, respectively. Besides, high phase transition current (1×10-6 A, 8×10-7 A and 6×10-7 A, respectively) is obtained with temperature induced. Consequently, the excellent electric properties and the restraint between temperature and electric field would provide basis on the application of PLZST antiferroelectric ceramics in microelectronic integrated systems and sophisticated weapons systems. -
References
[1] Tang Z F, Tang X G. Structural, dielectric and optical properties of highly oriented lead zirconate thin films prepared by sol-gel process. Mater Chem Phys, 2003, 80(1):294 doi: 10.1016/S0254-0584(02)00514-X[2] Zhai J W, Li X, Chen H. Effect of the orientation on the ferroelectric-antiferroelectric behavior of sol-gel deposited (Pb, Nb)(Zr, Sn, Ti)O3 thin films. Thin Solid Films, 2004, 446(2):200 doi: 10.1016/j.tsf.2003.09.067[3] Haertling G H. Ferroelectric ceramics:history and technology. Journal of the American Ceramic Society, 1999, 82(4):797 doi: 10.1111/j.1151-2916.1999.tb01840.x[4] Berlincourt D, Kruefer H H A, Jaffe B. Stability of phase in modified lead zirconate with variation in pressure, electric field, temperature and composition. J Phys Chem Solids, 1964, 25(7):659 doi: 10.1016/0022-3697(64)90175-1[5] Berlincourt D. Variation of electroelastic constants of polycrystalline lead titanate zirconate with thoroughness of poling. Journal of the Acoustical Society of America, 1964, 36(3):515 doi: 10.1121/1.1918990[6] Jaffe B, Cook W R, Jaffe H. Piezoelectric ceramics. London:Academic Press, 1971[7] Berlincourt D. Transducers using forced transitions between ferroelectric and antiferroelectric states. IEEE Trans Sonics and Ultrasonics, 1966, 13(4):116 doi: 10.1109/T-SU.1966.29394[8] Pan W Y, Dam C Q, Zhang Q M, et al. Large displacement transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.02)(Ti, Zr, Sn)O3 family of ceramics. J Appl Phys, 1989, 66(12):6013[9] Wang Chunli. Appliance research of antiferroelectrics. Piezoelectrics & Acoustooptics, 1994, 16(2):46[10] Li G, Furman E, Haertling G H. Fabrication and properties of PZST antiferroelectric rainbow actuators. Ferroelectrics, 1996, 188(1):233 doi: 10.1080/00150199608244892?queryID=%24{resultBean.queryID}[11] Haertling G H. Rainbow ceramics:a new type of ultra-high-displacement actuator. American Ceramic Society Bulletin, 1994, 73(1):93 http://cat.inist.fr/?aModele=afficheN&cpsidt=3907030[12] Xu Z K, Zhai J W, Chan W H, et al. Phase transformation and electric field tunable pyroelectric behavior of Pb(Nb, Zr, Sn, Ti)O3 and (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thin films. Appl Phys Lett, 2006, 88:132908 doi: 10.1063/1.2191413[13] Yang T Q, Liu P, Xu Z, et al. Tunable pyroelectricity in La-modified PZST antiferroelectric ceramics. Ferroelectrics, 1999, 230:181 doi: 10.1080/00150199908214916[14] Feng Y J, Xu Z, Yang T Q, et al. Pyroelectric spectrum in Pb(Zr, Sn, Ti)O3 antiferroelectric-ferroelectric ceramics. Chinese Science Bulletin, 2000, 45(13):1169 doi: 10.1007/BF02886071[15] Liu Gaomin, Tan Hua, Yuan Wanzong, et al. Ferroelectric/antiferroelectric phase transition studies of PZT-95/5 ceramics under shock loading. Chinese Journal of High Pressure Physics, 2002, 16(3):231 http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYWL200203012.htm[16] Dai Zhonghua, Yao Xi, Xu Zhuo, et al. Phase transition and dielectric properties of PbLa(Zr, Sn, Ti)O3 antiferroelectric ceramics under hydrostatic pressure. Journal of Electroceramics, 2008, 21(1-4):597 doi: 10.1007/s10832-007-9251-y -
Proportional views