J. Semicond. > 2015, Volume 36 > Issue 3 > 034004

SEMICONDUCTOR DEVICES

Voltage assisted control of spin-transfer nano-oscillators

Bahniman Ghosh1 and Gaurav Solanki2

+ Author Affiliations

 Corresponding author: Bahniman Ghosh, E-mail: bghosh@utexas.edu

DOI: 10.1088/1674-4926/36/3/034004

PDF

Abstract: The spin-transfer nano-oscillator (STNO) has recently acquired a huge amount of research interest, due to its promising easy tunability along with the miniature size. The output frequency control of an STNO through magnetic field and current has been examined almost to its full extent; however, there are issues that still need to be addressed. Here, we propose a novel way of voltage control of the output frequency of an STNO, and alongside reducing its power requirement.

Key words: spin-transfer nano-oscillatorvoltage controlled magnetic anisotropytunnelling magnetoresistance



[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
Fig. 1.  (a) A typical device configuration of an STNO. (b) Typical oscillation produced by an STNO.

Fig. 2.  Proposed structure of voltage (assisted) controlled STNO.

Fig. 3.  Frequency dependence on applied current in normal STNO.

Fig. 4.  Effect of VCMA on STNO as compared directly with the natural state, i.e. an inert STNO at currents of (a) 0.6 mA, (b) 0.7 mA, (c) 0.8 mA.

Fig. 5.  Effect of oxide material at 0.6 mA.

Fig. 6.  Effect of oxide material at 0.7 mA.

Fig. 7.  Effect of oxide material at 0.8 mA.

DownLoad: CSV
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
1

Voltage-dependent plasticity and image Boolean operations realized in a WOx-based memristive synapse

Jiajuan Shi, Ya Lin, Tao Zeng, Zhongqiang Wang, Xiaoning Zhao, et al.

Journal of Semiconductors, 2021, 42(1): 014102. doi: 10.1088/1674-4926/42/1/014102

2

A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission

Zhang Zhang, Ye Tan, Jianmin Zeng, Xu Han, Xin Cheng, et al.

Journal of Semiconductors, 2016, 37(9): 095003. doi: 10.1088/1674-4926/37/9/095003

3

Negative voltage bandgap reference with multilevel curvature compensation technique

Xi Liu, Qian Liu, Xiaoshi Jin, Yongrui Zhao, Jong-Ho Lee, et al.

Journal of Semiconductors, 2016, 37(5): 055008. doi: 10.1088/1674-4926/37/5/055008

4

Dynamic threshold voltage operation in Si and SiGe source junctionless tunnel field effect transistor

Shibir Basak, Pranav Kumar Asthana, Yogesh Goswami, Bahniman Ghosh

Journal of Semiconductors, 2014, 35(11): 114001. doi: 10.1088/1674-4926/35/11/114001

5

Capacitance-voltage analysis of a high-k dielectric on silicon

Davinder Rathee, Sandeep K. Arya, Mukesh Kumar

Journal of Semiconductors, 2012, 33(2): 022001. doi: 10.1088/1674-4926/33/2/022001

6

MOS Capacitance-Voltage Characteristics: V. Methods to Enhance the Trapping Capacitance

Jie Binbin, Sah Chihtang

Journal of Semiconductors, 2012, 33(2): 021001. doi: 10.1088/1674-4926/33/2/021001

7

Giant magnetoresistance in a two-dimensional electron gas modulated by ferromagnetic and Schottky metal stripes

Lu Jianduo, Xu Bin

Journal of Semiconductors, 2012, 33(7): 074007. doi: 10.1088/1674-4926/33/7/074007

8

MOS Capacitance–Voltage Characteristics from Electron-Trapping at Dopant Donor Impurity

Jie Binbin, Sah Chihtang

Journal of Semiconductors, 2011, 32(4): 041001. doi: 10.1088/1674-4926/32/4/041001

9

MOS Capacitance-Voltage Characteristics II. Sensitivity of Electronic Trapping at Dopant Impurity from Parameter Variations

Jie Binbin, Sah Chihtang

Journal of Semiconductors, 2011, 32(12): 121001. doi: 10.1088/1674-4926/32/12/121001

10

Development of spin-on-glass process for triple metal interconnects

Peng Li, Zhao Wenbin, Wang Guozhang, Yu Zongguang

Journal of Semiconductors, 2010, 31(12): 126003. doi: 10.1088/1674-4926/31/12/126003

11

A novel complementary N+-charge island SOI high voltage device

Wu Lijuan, Hu Shengdong, Zhang Bo, Li Zhaoji

Journal of Semiconductors, 2010, 31(11): 114010. doi: 10.1088/1674-4926/31/11/114010

12

Capacitance–voltage characterization of fully silicided gated MOS capacitor

Wang Baomin, Ru Guoping, Jiang Yulong, Qu Xinping, Li Bingzong, et al.

Journal of Semiconductors, 2009, 30(3): 034002. doi: 10.1088/1674-4926/30/3/034002

13

A high precision programmable bandgap voltage reference design for high resolution ADC

Zhu Tiancheng, Yao Suying, Li Binqiao

Journal of Semiconductors, 2009, 30(7): 075005. doi: 10.1088/1674-4926/30/7/075005

14

A Simulation of the Capacitance-Voltage Characteristics of a Ge/Si Quantum-Well Structure

Cheng Peihong, Huang Shihua

Journal of Semiconductors, 2008, 29(1): 110-115.

15

A Novel Offset-Cancellation Technique for Low Voltage CMOS Differential Amplifiers

Han Shuguang, Chi Baoyong, Wang Zhihua

Chinese Journal of Semiconductors , 2006, 27(5): 778-782.

16

Sub-1V CMOS Voltage Reference Based on Weighted Vgs

Zhang Xun, Wang Peng, Jin Dongming

Chinese Journal of Semiconductors , 2006, 27(5): 774-777.

17

Low Voltage Flash Memory Cells Using SiGe Quantum Dots for Enhancing F-N Tunneling

Deng Ning, Pan Liyang, Liu Zhihong, Zhu Jun, Chen Peiyi, et al.

Chinese Journal of Semiconductors , 2006, 27(3): 454-458.

18

Nonlinear Current-Voltage Characteristics and Electroluminescence of cBN Crystal

Dou Qingping, Chen Zhanguo, Jia Gang, Ma Haitao, Cao Kun, et al.

Chinese Journal of Semiconductors , 2006, 27(4): 609-612.

19

Alloy Temperature Dependence of Offset Voltage and Ohmic Contact Resistance in Thin Base InGaP/GaAs HBTs

Yang Wei, Liu Xunchun, Zhu Min, Wang Runmei, Shen Huajun, et al.

Chinese Journal of Semiconductors , 2006, 27(5): 765-768.

20

Design of a Monolithic CMOS LC-Voltage Controlled Oscillator with Low Phase Noise for 4GHz Frequency Synthesizers

Tang Lu, Wang Zhigong, Huang Ting, Li Zhiqun

Chinese Journal of Semiconductors , 2006, 27(3): 459-466.

1. Sravani, M., Bhuktare, S. Leaky-integrate-fire and reconfigurable neuron spiking in a field free spin Hall nano-oscillator with a conically magnetized free layer. Journal of Applied Physics, 2025, 137(4): 043903. doi:10.1063/5.0235639
2. Sravani, M., Bhuktare, S. Field-Free Mutual Synchronization of Parallel Coupled Spin Torque Nano Oscillators Using a Free Layer With First- and Second-Order Uniaxial Anisotropy. IEEE Transactions on Magnetics, 2025, 61(1): 1300107. doi:10.1109/TMAG.2024.3495025
  • Search

    Advanced Search >>

    GET CITATION

    Bahniman Ghosh, Gaurav Solanki. Voltage assisted control of spin-transfer nano-oscillators[J]. Journal of Semiconductors, 2015, 36(3): 034004. doi: 10.1088/1674-4926/36/3/034004
    B Ghosh, G Solanki. Voltage assisted control of spin-transfer nano-oscillators[J]. J. Semicond., 2015, 36(3): 034004. doi: 10.1088/1674-4926/36/3/034004.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2410 Times PDF downloads: 25 Times Cited by: 2 Times

    History

    Received: 13 August 2014 Revised: Online: Published: 01 March 2015

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bahniman Ghosh, Gaurav Solanki. Voltage assisted control of spin-transfer nano-oscillators[J]. Journal of Semiconductors, 2015, 36(3): 034004. doi: 10.1088/1674-4926/36/3/034004 ****B Ghosh, G Solanki. Voltage assisted control of spin-transfer nano-oscillators[J]. J. Semicond., 2015, 36(3): 034004. doi: 10.1088/1674-4926/36/3/034004.
      Citation:
      Bahniman Ghosh, Gaurav Solanki. Voltage assisted control of spin-transfer nano-oscillators[J]. Journal of Semiconductors, 2015, 36(3): 034004. doi: 10.1088/1674-4926/36/3/034004 ****
      B Ghosh, G Solanki. Voltage assisted control of spin-transfer nano-oscillators[J]. J. Semicond., 2015, 36(3): 034004. doi: 10.1088/1674-4926/36/3/034004.

      Voltage assisted control of spin-transfer nano-oscillators

      DOI: 10.1088/1674-4926/36/3/034004
      More Information
      • Corresponding author: E-mail: bghosh@utexas.edu
      • Received Date: 2014-08-13
      • Accepted Date: 2014-10-28
      • Published Date: 2015-01-25

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return