Processing math: 100%
J. Semicond. > 2015, Volume 36 > Issue 4 > 045006

SEMICONDUCTOR INTEGRATED CIRCUITS

A low power wide tuning range baseband filter for multistandard transceivers

Zhiqing Geng1, and Nanjian Wu2

+ Author Affiliations

 Corresponding author: Zhiqing Geng, E-mail: gengzhiqing@semi.ac.cn

DOI: 10.1088/1674-4926/36/4/045006

PDF

Abstract: This paper presents the design and implementation of a low power wide tuning range baseband filter with an accurate on-chip tuning circuit for reconfigurable multistandard wireless transceivers. The realized low pass filter (LPF) is a six-order Butterworth type by cascading three stage active-Gm-RC biquadratic cells. A modified linearization technique is used to improve the filter linearity performance at low power consumption. A new process-independent transconductor matching circuit and a new frequency tuning circuit with frequency compensation are proposed to achieve a high precision filter frequency response. The proposed LPF is realized in a 130 nm standard CMOS technology. The measured results show that the LPF exhibits a high bandwidth programmability from 0.1 to 25 MHz with a tuning frequency error less than 2.68% over the wide tuning range. The power consumption is scalable, ranging from 0.52 to 5.25 mA, from a 1.2 V power supply while achieving a 26.3 dBm in-band IIP3.

Key words: low powerbaseband filterfrequency tuning



[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
Fig. 1.  The system architecture of the entire filter.

Fig. 2.  The active-Gm-RC biquadratic cell.

Fig. 3.  The schematic of the R2_array (or R1_array).

Fig. 4.  The schematic of the C1_array and CC_array.

Fig. 5.  The schematic of the configurable operational amplifier (COA).

Fig. 6.  The schematic of the switchable operational amplifier (SOA).

Fig. 7.  The half equivalent circuit of the biquadratic cell.

Fig. 8.  The differential signal amplitude to the first stage and the second stage of the COA.

Fig. 9.  The simulated results of the third order intermodulation (IM3) distortion.

Fig. 10.  The simulated input referred noise of the entire filter.

Fig. 11.  The schematic of the transconductor matching circuit.

Fig. 12.  The schematic of the Gm unit.

Fig. 13.  The filter frequency response under three conditions.

Fig. 14.  The schematic of the frequency tuning circuit.

Fig. 15.  The schematic of the capacitor array CM_array.

Fig. 16.  The time sequence of the narrow bandwidth tuning mode.

Fig. 17.  The time sequence of the wide bandwidth tuning mode.

Fig. 18.  The simulated frequency response of the entire filter.

Fig. 19.  The half equivalent circuit of the biquadratic cell with parasitic capacitance.

Fig. 20.  The relationship between the filter cutoff frequency and Non.

Fig. 21.  The chip prototype of the entire filter.

Fig. 22.  The frequency response of the entire filter.

Fig. 23.  The measured cutoff frequency error of the filter.

Fig. 24.  The measured 1 dB compression point of the filter.

DownLoad: CSV
DownLoad: CSV
DownLoad: CSV
DownLoad: CSV
DownLoad: CSV
DownLoad: CSV
DownLoad: CSV
DownLoad: CSV
DownLoad: CSV
DownLoad: CSV
DownLoad: CSV

Table 1.   Performance summary and comparison to previous work.

DownLoad: CSV
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
1

Novel design techniques for noise-tolerant power-gated CMOS circuits

Rumi Rastogi, Sujata Pandey

Journal of Semiconductors, 2017, 38(1): 015001. doi: 10.1088/1674-4926/38/1/015001

2

Low-noise sub-harmonic injection locked multiloop ring oscillator

Weilin Xu, Di Wu, Xueming Wei, Baolin Wei, Jihai Duan, et al.

Journal of Semiconductors, 2016, 37(9): 095004. doi: 10.1088/1674-4926/37/9/095004

3

Design optimizations of phase noise, power consumption and frequency tuning for VCO

Nan Chen, Shengxi Diao, Lu Huang, Xuefei Bai, Fujiang Lin, et al.

Journal of Semiconductors, 2013, 34(9): 095009. doi: 10.1088/1674-4926/34/9/095009

4

A CMOS Gm-C complex filter with a reconfigurable center and cutoff frequencies in low-IF WiMAX receivers

Xin Cheng, Haigang Yang, Tongqiang Gao, Tao Yin

Journal of Semiconductors, 2013, 34(7): 075004. doi: 10.1088/1674-4926/34/7/075004

5

A 5 Gb/s low power current-mode transmitter with pre-emphasis for serial links

Junsheng Lü, Hao Ju, Mao Ye, Feng Zhang, Jianzhong Zhao, et al.

Journal of Semiconductors, 2013, 34(7): 075002. doi: 10.1088/1674-4926/34/7/075002

6

Pulse swallowing frequency divider with low power and compact structure

Gao Haijun, Sun Lingling, Cai Chaobo, Zhan Haiting

Journal of Semiconductors, 2012, 33(11): 115004. doi: 10.1088/1674-4926/33/11/115004

7

A 4th-order reconfigurable analog baseband filter for software-defined radio applications

Wang Weiwei, Chang Xuegui, Wang Xiao, Han Kefeng, Tan Xi, et al.

Journal of Semiconductors, 2011, 32(4): 045008. doi: 10.1088/1674-4926/32/4/045008

8

Design and verification of a 10-bit 1.2-V 100-MSPS D/A IP core based on a 0.13-μm low power CMOS process

Xu Bulu, Shao Bowen, Lin Xia, Yi Wei, Liu Yun, et al.

Journal of Semiconductors, 2010, 31(9): 095007. doi: 10.1088/1674-4926/31/9/095007

9

Low-power variable frequency PFC converters

Li Yani, Yang Yintang, Zhu Zhangming

Journal of Semiconductors, 2010, 31(1): 015008. doi: 10.1088/1674-4926/31/1/015008

10

A low power automatic gain control loop for a receiver

Li Guofeng, Geng Zhiqing, Wu Nanjian

Journal of Semiconductors, 2010, 31(9): 095009. doi: 10.1088/1674-4926/31/9/095009

11

A reconfigurable OTA-C baseband filter with wide digital tuning for GNSS receivers

Pan Wenguang, Ma Chengyan, Gan Yebing, Ye Tianchun

Journal of Semiconductors, 2010, 31(9): 095006. doi: 10.1088/1674-4926/31/9/095006

12

A low power cyclic ADC design for a wireless monitoring system for orthopedic implants

Chen Yi, Li Fule, Chen Hong, Zhang Chun, Wang Zhihua, et al.

Journal of Semiconductors, 2009, 30(8): 085009. doi: 10.1088/1674-4926/30/8/085009

13

Low-power wide-locking-range injection-locked frequency divider for OFDM UWB systems

Yin Jiangwei, Li Ning, Zheng Renliang, Li Wei, Ren Junyan, et al.

Journal of Semiconductors, 2009, 30(5): 055003. doi: 10.1088/1674-4926/30/5/055003

14

An asymmetric MOSFET-C band-pass filter with on-chip charge pump auto-tuning

Chen Fangxiong, Lin Min, Ma Heping, Jia Hailong, Shi Yin, et al.

Journal of Semiconductors, 2009, 30(8): 085005. doi: 10.1088/1674-4926/30/8/085005

15

A Low-Power High-Frequency CMOS Peak Detector

Li Xuechu, Gao Qingyun, Qin Shicai

Chinese Journal of Semiconductors , 2006, 27(10): 1707-1710.

16

Digital Coarse Tuning Loop for Wide-Band Fast-Settling Dual-Loop Frequency Synthesizers

Liu Junhua, Liao Huailin, Yin Jun, Huang Ru, Zhang Xing, et al.

Chinese Journal of Semiconductors , 2006, 27(11): 1911-1917.

17

An Ultra-Low-Power Embedded EEPROM for Passive RFID Tags

Yan Na, Tan Xi, Zhao Dixian, Min Hao

Chinese Journal of Semiconductors , 2006, 27(6): 994-998.

18

A Low Power SRAM/SOI Memory Cell Design

Yu Yang, Zhao Qian, Shao Zhibiao

Chinese Journal of Semiconductors , 2006, 27(2): 318-322.

19

Synthesis Scheme for Low Power Designs Under Timing Constraints

Wang Ling,Wen Dongxin, Yang Xiaozong,and Jiang Yingta

Chinese Journal of Semiconductors , 2005, 26(2): 287-293.

20

A 4.8GHz CMOS Fully Integrated LC Balanced Oscillator with Symmetrical Noise Filter Technique and Large Tuning Range

Yang Fenglin, Zhang Zhaofeng, Li Baoqi, and Min Hao

Chinese Journal of Semiconductors , 2005, 26(3): 448-454.

1. Zhao, X., Yang, Y., Chen, Z. et al. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity. Journal of Semiconductors, 2017, 38(2): 023004. doi:10.1088/1674-4926/38/2/023004
2. Wang, Y., Liu, J., Yan, N. et al. A low-noise widely tunable Gm-C filter with frequency calibration. Journal of Semiconductors, 2016, 37(9): 095002. doi:10.1088/1674-4926/37/9/095002
  • Search

    Advanced Search >>

    GET CITATION

    Zhiqing Geng, Nanjian Wu. A low power wide tuning range baseband filter for multistandard transceivers[J]. Journal of Semiconductors, 2015, 36(4): 045006. doi: 10.1088/1674-4926/36/4/045006
    Z Q Geng, N J Wu. A low power wide tuning range baseband filter for multistandard transceivers[J]. J. Semicond., 2015, 36(4): 045006. doi: 10.1088/1674-4926/36/4/045006.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2594 Times PDF downloads: 29 Times Cited by: 2 Times

    History

    Received: 23 October 2014 Revised: Online: Published: 01 April 2015

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhiqing Geng, Nanjian Wu. A low power wide tuning range baseband filter for multistandard transceivers[J]. Journal of Semiconductors, 2015, 36(4): 045006. doi: 10.1088/1674-4926/36/4/045006 ****Z Q Geng, N J Wu. A low power wide tuning range baseband filter for multistandard transceivers[J]. J. Semicond., 2015, 36(4): 045006. doi: 10.1088/1674-4926/36/4/045006.
      Citation:
      Zhiqing Geng, Nanjian Wu. A low power wide tuning range baseband filter for multistandard transceivers[J]. Journal of Semiconductors, 2015, 36(4): 045006. doi: 10.1088/1674-4926/36/4/045006 ****
      Z Q Geng, N J Wu. A low power wide tuning range baseband filter for multistandard transceivers[J]. J. Semicond., 2015, 36(4): 045006. doi: 10.1088/1674-4926/36/4/045006.

      A low power wide tuning range baseband filter for multistandard transceivers

      DOI: 10.1088/1674-4926/36/4/045006
      Funds:

      Project supported by the Scientific Research Plan Projects of Hebei Education Department (No. Q2012019).

      More Information
      • Corresponding author: E-mail: gengzhiqing@semi.ac.cn
      • Received Date: 2014-10-23
      • Accepted Date: 2014-11-22
      • Published Date: 2015-01-25

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return