SEMICONDUCTOR DEVICES

High-responsivity 40 Gbit/s InGaAs/InP PIN photodetectors integrated on siliconon-insulator waveguide circuitss

Dongdong Yin, Tingting He, Qin Han, Qianqian Lü, Yejin Zhang and Xiaohong Yang

+ Author Affiliations

 Corresponding author: Yang Xiaohong,xhyang@semi.ac.cn

PDF

Abstract: This paper presents a high-responsivity and high-speed InGaAs/InP PIN photodetector integrated onto the silicon waveguide substrate utilizing the divinyltetramethyldisiloxane-benzocyclobutene (DVS-BCB) adhesive bonding method. A grating coupler is adopted to couple light from the fiber to the silicon waveguide. Light in the silicon photonic waveguide is evanescently coupled into the photodetector. The integrated photodetector structure is first simulated using the FDTD (finite difference time domain) solutions software and the simulation results show a detection efficiency of 95%. According to the simulation result, the integrated photodetector is fabricated. The measured responsivity of the fabricated integrated photodetector with a detection length of 30 μm is 0.89 A/W excluding the coupling loss between the fiber and the grating coupler and the silicon propagation loss at the wavelength of 1550 nm with a reverse bias voltage of 3 V. Measured 3-dB bandwidth is 27 GHz using the Lightwave Component Analyzer (LCA). The eye diagram signal test results indicate that the photodetector can operate at a high speed of 40 Gbit/s. The integrated photodetector is of great significance in the silicon-based optoelectronic integrated chip which can be applied to the optical communication and the super node data transmission chip of the high-performance computer.

Key words: integrated photodetectorsbondingsilicon on insulatorevanescent wave



[1]
Sun C, Wade M T, Lee Y, et al. Single-chip microprocessor that communicates directly using light. Nature, 2015, 528(7583):534 doi: 10.1038/nature16454
[2]
Zhang Y J, Qu H W, Wang H L, et al. Hybrid Ⅲ-V/silicon singlemode laser with periodic microstructures. Opt Lett, 2013, 38(6):842 doi: 10.1364/OL.38.000842
[3]
Binetti P R A, Leijtens X J M, De Vries T, et al. InP/InGaAs photodetector on SOI photonic circuitry. Photonics J IEEE, 2010, 2(3):299 doi: 10.1109/JPHOT.2010.2046151
[4]
Li Y, Zhang Y, Zhang L, et al. Silicon and hybrid silicon photonic devices for intra-datacenter applications:state of the art and perspectives. Photonics Research, 2015, 3(5):B10 http://cn.bing.com/academic/profile?id=2228669439&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Absil P P, Verheyen P, De H P, et al. Silicon photonics integrated circuits:a manufacturing platform for high density, low power optical I/O's. Opt Express, 2015, 23(7):9369 doi: 10.1364/OE.23.009369
[6]
Sui S S, Tang M Y, Yang Y D, et al. Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide. IEEE Photonics J, 2015, 7(2):1 http://cn.bing.com/academic/profile?id=1989619676&encoded=0&v=paper_preview&mkt=zh-cn
[7]
Lim E J, Song J, Fang Q, et al. Review of silicon photonics foundry efforts. IEEE J Sel Top Quantum, 2014, 20(4):405 doi: 10.1109/JSTQE.2013.2293274
[8]
Streshinsky M, Ding R, Liu Y, et al. The road to affordable, largescale silicon photonics. Opt Photonics News, 2013, 24(9):32 doi: 10.1364/OPN.24.9.000032
[9]
Baehr T, Pinguet T, Guo-Qiang P L. Myths and rumours of silicon photonics. Nat Photonics, 2012, 6(4):206 doi: 10.1038/nphoton.2012.66
[10]
Heck M J R, Chen H W, Fang A W, et al. Hybrid silicon photonics for optical interconnects. IEEE J Sel Top Quantum, 2011, 17(2):333 doi: 10.1109/JSTQE.2010.2051798
[11]
Dwivedi S, Ruocco A, Vanslembrouck M, et al. Experimental extraction of effective refractive index and thermo-optic coefficients of silicon-on-insulator waveguides using interferometers. J Lightw Technol, 2015, 33(21):4471 doi: 10.1109/JLT.2015.2476603
[12]
Cao Y L, Hu X N, Luo X S, et al. Hybrid Ⅲ-V/silicon laser with laterally coupled Bragg grating. Opt Express, 2015, 23(7):8800 doi: 10.1364/OE.23.008800
[13]
Roelkens G, Liu L, Liang D, et al. Ⅲ-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon Rev, 2010, 4(6):751 doi: 10.1002/lpor.v4:6
[14]
Sheng Z, Liu L, Brouckaert J, et al. InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides. Opt Express, 2010, 18(2):1756 doi: 10.1364/OE.18.001756
[15]
Binetti P R A, Orobtchouk R, Leijtens X J M, et al. InP-based membrane couplers for optical interconnects on Si. IEEE Photonic Tech Lett, 2009, 21(5):337 doi: 10.1109/LPT.2008.2011649
[16]
Van Campenhout J, Binetti P R A, Romeo P R, et al. Lowfootprint optical interconnect on an SOI chip through heterogeneous integration of InP-based microdisk lasers and microdetectors. IEEE Photonic Tech Lett, 2009, 21(8):522 doi: 10.1109/LPT.2009.2014391
[17]
Yao Y, Liu X, Yuan L, et al. A novel PIN photodetector with double linear arrays for rainfall prediction. Journal of Semiconductors, 2015, 36(9):094011 doi: 10.1088/1674-4926/36/9/094011
[18]
Yang M, Chong M, Zhao D G, et al. Back-illuminated AlxGa1-xN-based dual-band solar-blind ultraviolet photodetectors. Journal of Semiconductors, 2014, 35(6):064008 doi: 10.1088/1674-4926/35/6/064008
[19]
Li B, Yang X H, Yin W H, et al. A high-speed avalanche photodiode. Journal of Semiconductors, 2014, 35(7):074009 doi: 10.1088/1674-4926/35/7/074009
[20]
Chen L Q, Huang X Y, Li M, et al. High-performance Ge p-i-n photodetector on Si substrate. Optoelectron Lett, 2015, 11(3):195 doi: 10.1007/s11801-015-5044-8
[21]
Klinger S, Berroth M, Kaschel M, et al. Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz. IEEE Photonic Tech Lett, 2009, 21(13):920 doi: 10.1109/LPT.2009.2020510
[22]
Ahn D, Hong C Y, Liu J, et al. High performance, waveguide integrated Ge photodetectors. Opt Express, 2007, 15(7):3916 doi: 10.1364/OE.15.003916
[23]
Chen L, Dong P, Lipson M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Opt Express, 2008, 16(15):11513 doi: 10.1364/OE.16.011513
[24]
Jutzi M, Berroth M, Wohl G, et al. Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth. IEEE Photonic Tech Lett, 2005, 17(7):1510 doi: 10.1109/LPT.2005.848546
[25]
Keyvaninia S, Muneeb M, Stanković S, et al. Ultra-thin DVSBCB adhesive bonding of Ⅲ-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 2013, 3(1):35 doi: 10.1364/OME.3.000035
[26]
Yin D D, Han Q, Yin W H, et al. IEEE 14th International Conference on Optical Communications and Networks, 2015, July 3-5, Nanjing, China
[27]
Zhu Y, Xu X J, Li Z Y, et al. High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fibre. Chin Phys B, 2010, 19(1):393 http://cn.bing.com/academic/profile?id=2066863104&encoded=0&v=paper_preview&mkt=zh-cn
[28]
Kato K, Hata S, Kawano K, et al. Design of ultrawide-band, highsensitivity p-i-n protodetectors. IEICE Trans Electron, 1993, E76-C(2):214
Fig. 1.  (Color online) The cross section view (a) and the side view (b) of the integrated photodetector. The three-dimensional structure diagram (c) of the integrated photodetector. The photodetector is integrated on top of the SOI,which is used to guide light to the photodetector.

Fig. 2.  (Color online) The lateral optical field distribution of the simulation result of the device integrated on (a) the 450 nm silicon waveguide and (b) the 2 μm silicon waveguide.

Fig. 3.  The simulated optical absorption property curve of the photodetector integrated on different silicon waveguides with widths of 450 nm and 2 μm. The absorption region starts at the location of 40 μm.

Fig. 4.  (Color online) The microphotograph of the top view of a fabricated silicon waveguide integrated InGaAs/InP photodiode.

Fig. 5.  The SOI waveguide and grating coupler loss measurement structure.

Fig. 6.  (Color online) Measured I-V curve for device without input light and under the 7.9 mW incident light power at the wavelength of 1550 nm.

Fig. 7.  The frequency response of the integrated photodetector with a reverse bias of 3 V.

Fig. 8.  (Color online) The eye diagrams of the integrated photodetector at 26 and 40 Gbit/s.

Table 1.   The Ⅲ-V epitaxial layer structure of the integrated photodetector.

[1]
Sun C, Wade M T, Lee Y, et al. Single-chip microprocessor that communicates directly using light. Nature, 2015, 528(7583):534 doi: 10.1038/nature16454
[2]
Zhang Y J, Qu H W, Wang H L, et al. Hybrid Ⅲ-V/silicon singlemode laser with periodic microstructures. Opt Lett, 2013, 38(6):842 doi: 10.1364/OL.38.000842
[3]
Binetti P R A, Leijtens X J M, De Vries T, et al. InP/InGaAs photodetector on SOI photonic circuitry. Photonics J IEEE, 2010, 2(3):299 doi: 10.1109/JPHOT.2010.2046151
[4]
Li Y, Zhang Y, Zhang L, et al. Silicon and hybrid silicon photonic devices for intra-datacenter applications:state of the art and perspectives. Photonics Research, 2015, 3(5):B10 http://cn.bing.com/academic/profile?id=2228669439&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Absil P P, Verheyen P, De H P, et al. Silicon photonics integrated circuits:a manufacturing platform for high density, low power optical I/O's. Opt Express, 2015, 23(7):9369 doi: 10.1364/OE.23.009369
[6]
Sui S S, Tang M Y, Yang Y D, et al. Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide. IEEE Photonics J, 2015, 7(2):1 http://cn.bing.com/academic/profile?id=1989619676&encoded=0&v=paper_preview&mkt=zh-cn
[7]
Lim E J, Song J, Fang Q, et al. Review of silicon photonics foundry efforts. IEEE J Sel Top Quantum, 2014, 20(4):405 doi: 10.1109/JSTQE.2013.2293274
[8]
Streshinsky M, Ding R, Liu Y, et al. The road to affordable, largescale silicon photonics. Opt Photonics News, 2013, 24(9):32 doi: 10.1364/OPN.24.9.000032
[9]
Baehr T, Pinguet T, Guo-Qiang P L. Myths and rumours of silicon photonics. Nat Photonics, 2012, 6(4):206 doi: 10.1038/nphoton.2012.66
[10]
Heck M J R, Chen H W, Fang A W, et al. Hybrid silicon photonics for optical interconnects. IEEE J Sel Top Quantum, 2011, 17(2):333 doi: 10.1109/JSTQE.2010.2051798
[11]
Dwivedi S, Ruocco A, Vanslembrouck M, et al. Experimental extraction of effective refractive index and thermo-optic coefficients of silicon-on-insulator waveguides using interferometers. J Lightw Technol, 2015, 33(21):4471 doi: 10.1109/JLT.2015.2476603
[12]
Cao Y L, Hu X N, Luo X S, et al. Hybrid Ⅲ-V/silicon laser with laterally coupled Bragg grating. Opt Express, 2015, 23(7):8800 doi: 10.1364/OE.23.008800
[13]
Roelkens G, Liu L, Liang D, et al. Ⅲ-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon Rev, 2010, 4(6):751 doi: 10.1002/lpor.v4:6
[14]
Sheng Z, Liu L, Brouckaert J, et al. InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides. Opt Express, 2010, 18(2):1756 doi: 10.1364/OE.18.001756
[15]
Binetti P R A, Orobtchouk R, Leijtens X J M, et al. InP-based membrane couplers for optical interconnects on Si. IEEE Photonic Tech Lett, 2009, 21(5):337 doi: 10.1109/LPT.2008.2011649
[16]
Van Campenhout J, Binetti P R A, Romeo P R, et al. Lowfootprint optical interconnect on an SOI chip through heterogeneous integration of InP-based microdisk lasers and microdetectors. IEEE Photonic Tech Lett, 2009, 21(8):522 doi: 10.1109/LPT.2009.2014391
[17]
Yao Y, Liu X, Yuan L, et al. A novel PIN photodetector with double linear arrays for rainfall prediction. Journal of Semiconductors, 2015, 36(9):094011 doi: 10.1088/1674-4926/36/9/094011
[18]
Yang M, Chong M, Zhao D G, et al. Back-illuminated AlxGa1-xN-based dual-band solar-blind ultraviolet photodetectors. Journal of Semiconductors, 2014, 35(6):064008 doi: 10.1088/1674-4926/35/6/064008
[19]
Li B, Yang X H, Yin W H, et al. A high-speed avalanche photodiode. Journal of Semiconductors, 2014, 35(7):074009 doi: 10.1088/1674-4926/35/7/074009
[20]
Chen L Q, Huang X Y, Li M, et al. High-performance Ge p-i-n photodetector on Si substrate. Optoelectron Lett, 2015, 11(3):195 doi: 10.1007/s11801-015-5044-8
[21]
Klinger S, Berroth M, Kaschel M, et al. Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz. IEEE Photonic Tech Lett, 2009, 21(13):920 doi: 10.1109/LPT.2009.2020510
[22]
Ahn D, Hong C Y, Liu J, et al. High performance, waveguide integrated Ge photodetectors. Opt Express, 2007, 15(7):3916 doi: 10.1364/OE.15.003916
[23]
Chen L, Dong P, Lipson M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Opt Express, 2008, 16(15):11513 doi: 10.1364/OE.16.011513
[24]
Jutzi M, Berroth M, Wohl G, et al. Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth. IEEE Photonic Tech Lett, 2005, 17(7):1510 doi: 10.1109/LPT.2005.848546
[25]
Keyvaninia S, Muneeb M, Stanković S, et al. Ultra-thin DVSBCB adhesive bonding of Ⅲ-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 2013, 3(1):35 doi: 10.1364/OME.3.000035
[26]
Yin D D, Han Q, Yin W H, et al. IEEE 14th International Conference on Optical Communications and Networks, 2015, July 3-5, Nanjing, China
[27]
Zhu Y, Xu X J, Li Z Y, et al. High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fibre. Chin Phys B, 2010, 19(1):393 http://cn.bing.com/academic/profile?id=2066863104&encoded=0&v=paper_preview&mkt=zh-cn
[28]
Kato K, Hata S, Kawano K, et al. Design of ultrawide-band, highsensitivity p-i-n protodetectors. IEICE Trans Electron, 1993, E76-C(2):214
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3722 Times PDF downloads: 48 Times Cited by: 0 Times

    History

    Received: 07 May 2016 Revised: 24 May 2016 Online: Published: 01 November 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dongdong Yin, Tingting He, Qin Han, Qianqian Lü, Yejin Zhang, Xiaohong Yang. High-responsivity 40 Gbit/s InGaAs/InP PIN photodetectors integrated on siliconon-insulator waveguide circuitss[J]. Journal of Semiconductors, 2016, 37(11): 114006. doi: 10.1088/1674-4926/37/11/114006 ****D D Yin, T T He, Q Han, Q Lü, Y J Zhang, X H Yang. High-responsivity 40 Gbit/s InGaAs/InP PIN photodetectors integrated on siliconon-insulator waveguide circuitss[J]. J. Semicond., 2016, 37(11): 114006. doi: 10.1088/1674-4926/37/11/114006.
      Citation:
      Dongdong Yin, Tingting He, Qin Han, Qianqian Lü, Yejin Zhang, Xiaohong Yang. High-responsivity 40 Gbit/s InGaAs/InP PIN photodetectors integrated on siliconon-insulator waveguide circuitss[J]. Journal of Semiconductors, 2016, 37(11): 114006. doi: 10.1088/1674-4926/37/11/114006 ****
      D D Yin, T T He, Q Han, Q Lü, Y J Zhang, X H Yang. High-responsivity 40 Gbit/s InGaAs/InP PIN photodetectors integrated on siliconon-insulator waveguide circuitss[J]. J. Semicond., 2016, 37(11): 114006. doi: 10.1088/1674-4926/37/11/114006.

      High-responsivity 40 Gbit/s InGaAs/InP PIN photodetectors integrated on siliconon-insulator waveguide circuitss

      doi: 10.1088/1674-4926/37/11/114006
      Funds:

      Project supported by the High-Tech Research and Development Program of China (Nos. 2015AA016904, 2015AA012302), the National Basic Research Program of China (Nos. 2012CB933503, 2013CB932904), and the National Natural Foundation of China (Nos. 61274069, 61176053, 61021003, 61435002)

      the National Natural Foundation of China Nos. 61274069, 61176053, 61021003, 61435002

      Project supported by the High-Tech Research and Development Program of China Nos. 2015AA016904, 2015AA012302

      the National Basic Research Program of China . 2012CB933503, 2013CB932904

      More Information
      • Corresponding author: Yang Xiaohong,xhyang@semi.ac.cn
      • Received Date: 2016-05-07
      • Revised Date: 2016-05-24
      • Published Date: 2016-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return