SEMICONDUCTOR INTEGRATED CIRCUITS

A long lifetime, low error rate RRAM design with self-repair module

Zhiqiang You, Fei Hu, Liming Huang, Peng Liu, Jishun Kuang and Shiying Li

+ Author Affiliations

 Corresponding author: You Zhiqiang,you@hnu.edu.cn

PDF

Abstract: Resistive random access memory (RRAM) is one of the promising candidates for future universal memory. However, it suffers from serious error rate and endurance problems. Therefore, exploring a technical solution is greatly demanded to enhance endurance and reduce error rate. In this paper, we propose a reliable RRAM architecture that includes two reliability modules: error correction code (ECC) and self-repair modules. The ECC module is used to detect errors and decrease error rate. The self-repair module, which is proposed for the first time for RRAM, can get the information of error bits and repair wear-out cells by a repair voltage. Simulation results show that the proposed architecture can achieve lowest error rate and longest lifetime compared to previous reliable designs.

Key words: self-repairECCRRAMmemristor



[1]
Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453:80 doi: 10.1038/nature06932
[2]
Niu D, Xiao Y, Xie Y. Low power memristor-based ReRAM design with error correcting code. 17th Asia and South Pacific Design Automation Conference, 2012:79 http://cn.bing.com/academic/profile?id=1966433652&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Sun Pengxiao, Liu Su, Li Ling, et al. Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM. Journal of Semiconductors, 2014, 35(10):104007 doi: 10.1088/1674-4926/35/10/104007
[4]
Chen Y S, Lee H Y, Chen P S, et al. Challenges and opportunities for HfOx based resistive random access memory. 2011 IEEE International Electron Devices Meeting (IEDM), 2011:31.3.1 http://cn.bing.com/academic/profile?id=1495239691&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Schechter S, Loh G H, Straus K, et al. Use ECP, not ECC, for hard failures in resistive memories. ACM SIGARCH Computer Architecture News, ACM, 2010, 38(3):141 doi: 10.1145/1816038
[6]
Yoon D H, Muralimanohar N, Chang J, et al. FREE-p:protecting non-volatile memory against both hard and soft errors. 2011 IEEE 17th International Symposium on High Performance Computer Architecture (HPCA), 2011:466 http://cn.bing.com/academic/profile?id=2155462575&encoded=0&v=paper_preview&mkt=zh-cn
[7]
Ghofrani A, Lastras-Montano M A, Cheng K T. Towards data reliable crossbar-based memristive memories. 2013 IEEE International Test Conference (ITC), 2013:14.3.1 http://cn.bing.com/academic/profile?id=1965970229&encoded=0&v=paper_preview&mkt=zh-cn
[8]
Chen B, Lu Y, Gao B, et al. Physical mechanisms of endurance degradation in TMO-RRAM. 2011 IEEE International Electron Devices Meeting (IEDM), 2011:12.3.1 http://cn.bing.com/academic/profile?id=2018068167&encoded=0&v=paper_preview&mkt=zh-cn
[9]
Huang P Y, Chen B, Wang Y J, et al. Analytic model of endurance degradation and its practical applications for operation scheme optimization in metal oxide based RRAM. 2013 IEEE International Electron Devices Meeting (IEDM), 2013:22.5.1 http://cn.bing.com/academic/profile?id=2083980649&encoded=0&v=paper_preview&mkt=zh-cn
[10]
Chen Y Y, Govoreanu B, Goux L, et al. Balancing set/reset pulse for endurance in 1T1R bipolar RRAM. IEEE Trans Electron Devices, 2012, 59(12):3243 doi: 10.1109/TED.2012.2218607
[11]
Kim S Y, Baek J M, Seo D J, et al. Power-efficient fast write and hidden refresh of ReRAM using an ADC-based sense amplifier. IEEE Trans Circuits Syst Ⅱ, 2013, 60(11):776 http://cn.bing.com/academic/profile?id=2050500844&encoded=0&v=paper_preview&mkt=zh-cn
[12]
Lu Jinglong, Luo Jing, Zhao Hongpeng, et al. Optimal migration route of Cu in HfO2. Journal of Semiconductors, 2014, 35(1):013001 doi: 10.1088/1674-4926/35/1/013001
[13]
Zhao Yuanyang, Wang Jiayu, Xu Jianbin, et al. Metal dopants in HfO2-based RRAM:first principle study. Journal of Semiconductors, 2014, 35(4):042002 doi: 10.1088/1674-4926/35/4/042002
[14]
Liu P, You Z, Kuang J, et al. Logic operation-based DFT method and 1R memristive crossbar march-like test algorithm. IEICE Electronics Express, 2015, 12(23):20150839 doi: 10.1587/elex.12.20150839
Fig. 1.  (Color online) Structure and I-V curve of a memristor cell. (a) Structure of a memristor cell presented by HP labs. (b) I-V curve of a memristor cell[2].

Fig. 2.  (Color online) Schematic views of endurance degradation mechanisms[6].

Fig. 3.  RRAM architecture with ECC and self-repair modules.

Fig. 4.  Self-repair procedure.

Fig. 5.  Implementation of self-repair module.

Fig. 6.  (Color online) Error rate for different RRAM systems in 512 bits block.

Table 1.   Evaluated wear-out failure tolerance mechanisms.

Table 2.   Endurance (switching cycles) of a block in different reliability designs.

[1]
Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453:80 doi: 10.1038/nature06932
[2]
Niu D, Xiao Y, Xie Y. Low power memristor-based ReRAM design with error correcting code. 17th Asia and South Pacific Design Automation Conference, 2012:79 http://cn.bing.com/academic/profile?id=1966433652&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Sun Pengxiao, Liu Su, Li Ling, et al. Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM. Journal of Semiconductors, 2014, 35(10):104007 doi: 10.1088/1674-4926/35/10/104007
[4]
Chen Y S, Lee H Y, Chen P S, et al. Challenges and opportunities for HfOx based resistive random access memory. 2011 IEEE International Electron Devices Meeting (IEDM), 2011:31.3.1 http://cn.bing.com/academic/profile?id=1495239691&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Schechter S, Loh G H, Straus K, et al. Use ECP, not ECC, for hard failures in resistive memories. ACM SIGARCH Computer Architecture News, ACM, 2010, 38(3):141 doi: 10.1145/1816038
[6]
Yoon D H, Muralimanohar N, Chang J, et al. FREE-p:protecting non-volatile memory against both hard and soft errors. 2011 IEEE 17th International Symposium on High Performance Computer Architecture (HPCA), 2011:466 http://cn.bing.com/academic/profile?id=2155462575&encoded=0&v=paper_preview&mkt=zh-cn
[7]
Ghofrani A, Lastras-Montano M A, Cheng K T. Towards data reliable crossbar-based memristive memories. 2013 IEEE International Test Conference (ITC), 2013:14.3.1 http://cn.bing.com/academic/profile?id=1965970229&encoded=0&v=paper_preview&mkt=zh-cn
[8]
Chen B, Lu Y, Gao B, et al. Physical mechanisms of endurance degradation in TMO-RRAM. 2011 IEEE International Electron Devices Meeting (IEDM), 2011:12.3.1 http://cn.bing.com/academic/profile?id=2018068167&encoded=0&v=paper_preview&mkt=zh-cn
[9]
Huang P Y, Chen B, Wang Y J, et al. Analytic model of endurance degradation and its practical applications for operation scheme optimization in metal oxide based RRAM. 2013 IEEE International Electron Devices Meeting (IEDM), 2013:22.5.1 http://cn.bing.com/academic/profile?id=2083980649&encoded=0&v=paper_preview&mkt=zh-cn
[10]
Chen Y Y, Govoreanu B, Goux L, et al. Balancing set/reset pulse for endurance in 1T1R bipolar RRAM. IEEE Trans Electron Devices, 2012, 59(12):3243 doi: 10.1109/TED.2012.2218607
[11]
Kim S Y, Baek J M, Seo D J, et al. Power-efficient fast write and hidden refresh of ReRAM using an ADC-based sense amplifier. IEEE Trans Circuits Syst Ⅱ, 2013, 60(11):776 http://cn.bing.com/academic/profile?id=2050500844&encoded=0&v=paper_preview&mkt=zh-cn
[12]
Lu Jinglong, Luo Jing, Zhao Hongpeng, et al. Optimal migration route of Cu in HfO2. Journal of Semiconductors, 2014, 35(1):013001 doi: 10.1088/1674-4926/35/1/013001
[13]
Zhao Yuanyang, Wang Jiayu, Xu Jianbin, et al. Metal dopants in HfO2-based RRAM:first principle study. Journal of Semiconductors, 2014, 35(4):042002 doi: 10.1088/1674-4926/35/4/042002
[14]
Liu P, You Z, Kuang J, et al. Logic operation-based DFT method and 1R memristive crossbar march-like test algorithm. IEICE Electronics Express, 2015, 12(23):20150839 doi: 10.1587/elex.12.20150839
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3660 Times PDF downloads: 26 Times Cited by: 0 Times

    History

    Received: 21 March 2016 Revised: 12 May 2016 Online: Published: 01 November 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhiqiang You, Fei Hu, Liming Huang, Peng Liu, Jishun Kuang, Shiying Li. A long lifetime, low error rate RRAM design with self-repair module[J]. Journal of Semiconductors, 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004 ****Z Q You, F Hu, L M Huang, P Liu, J S Kuang, S Y Li. A long lifetime, low error rate RRAM design with self-repair module[J]. J. Semicond., 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004.
      Citation:
      Zhiqiang You, Fei Hu, Liming Huang, Peng Liu, Jishun Kuang, Shiying Li. A long lifetime, low error rate RRAM design with self-repair module[J]. Journal of Semiconductors, 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004 ****
      Z Q You, F Hu, L M Huang, P Liu, J S Kuang, S Y Li. A long lifetime, low error rate RRAM design with self-repair module[J]. J. Semicond., 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004.

      A long lifetime, low error rate RRAM design with self-repair module

      doi: 10.1088/1674-4926/37/11/115004
      Funds:

      the National Natural Science Foundation of China Nos. 61472123, 61272396

      Project supported by the New Century Excellent Talents in University No. NCET-12-0165

      Project supported by the New Century Excellent Talents in University (No. NCET-12-0165) and the National Natural Science Foundation of China (Nos. 61472123, 61272396)

      More Information
      • Corresponding author: You Zhiqiang,you@hnu.edu.cn
      • Received Date: 2016-03-21
      • Revised Date: 2016-05-12
      • Published Date: 2016-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return