SPECIAL TOPIC ON 2D MATERIALS AND DEVICES

Devices and applications of van der Waals heterostructures

Chao Li, Peng Zhou and David Wei Zhang

+ Author Affiliations

 Corresponding author: Peng Zhou,Email:pengzhou@fudan.edu.cn

PDF

Abstract: Van der Waals heterostructures, composed of individual two-dimensional material have been developing extremely fast. Synthesis of van der Waals heterostructures without the constraint of lattice matching and processing compatibility provides an ideal platform for fundamental research and new device exploitation. We review the approach of synthesis of van der Waals heterostructures, discuss the property of heterostructures and thoroughly illustrate the functional van der Waals heterostructures used in novel electronic and photoelectronic device.

Key words: van der Waals heterostructuretwo-dimensional materialelectronic and photoelectronic device



[1]
Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30):10451 doi: 10.1073/pnas.0502848102
[2]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3):183 doi: 10.1038/nmat1849
[3]
Gao H, Liu Z, Feng X. From 2004 to 2014:a fruitful decade for graphene research in China. Small, 2014, 10(11):2121 doi: 10.1002/smll.201400915
[4]
Jariwala D, Sangwan V K, Lauhon L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8(2):1102 doi: 10.1021/nn500064s
[5]
Chhowalla M, Shin H S, Eda G, et al. The chemistry of twodimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5(4):263 doi: 10.1038/nchem.1589
[6]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459):419 doi: 10.1038/nature12385
[7]
Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc National Academy of Sciences of the United States of America, 2005, 102(30):10451 doi: 10.1073/pnas.0502848102
[8]
Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5(10):722 doi: 10.1038/nnano.2010.172
[9]
Jena D. Tunneling transistors based on graphene and 2-D crystals. Proc IEEE, 2013, 101(7):1585 doi: 10.1109/JPROC.2013.2253435
[10]
Roy T, Tosun M, Kang J S, et al. Field-effect transistors built from all two-dimensional material components. ACS Nano, 2014, 8(6):6259 doi: 10.1021/nn501723y
[11]
Allain A, Kang J, Banerjee K, et al. Electrical contacts to twodimensional semiconductors. Nat Mater, 2015, 14(12):1195 doi: 10.1038/nmat4452
[12]
Das S, Chen H Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett, 2012, 13(1):100
[13]
Liu Y, Wu H, Cheng H C, et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett, 2015, 15(5):3030 doi: 10.1021/nl504957p
[14]
D Qu, X Liu, Ahmed F, et al. Self-screened high performance multi-layer MoS2 transistor formed by using a bottom graphene electrode. Nanoscale, 2015, 7(45):19273 doi: 10.1039/C5NR06076A
[15]
Mak K F, Lee C, Hone J, et al. Atomically thin MoS2:a new direct-gap semiconductor. Phys Rev Lett, 2010, 105(13):136805 doi: 10.1103/PhysRevLett.105.136805
[16]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3):147 doi: 10.1038/nnano.2010.279
[17]
Podzorov V, Gershenson M E, Kloc C, et al. High-mobility fieldeffect transistors based on transition metal dichalcogenides. Appl Phys Lett, 2004, 84(17):3301 doi: 10.1063/1.1723695
[18]
Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B, 2014, 89(23):235319 doi: 10.1103/PhysRevB.89.235319
[19]
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5):372 doi: 10.1038/nnano.2014.35
[20]
Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett, 2014, 14(11):6414 doi: 10.1021/nl502928y
[21]
Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus:an emerging infrared and mid-infrared optical material. Opt Express, 2015, 23(9):11183 doi: 10.1364/OE.23.011183
[22]
Mayorov A S, Gorbachev R V, Morozov S V, et al. Micrometerscale ballistic transport in encapsulated graphene at room temperature. Nano Lett, 2011, 11(6):2396 doi: 10.1021/nl200758b
[23]
Meric I, Dean C, Young A. Graphene field-effect transistors based on boron nitride gate dielectrics. Physics, 2011, 100(23):23.2.1 http://www.docin.com/p-365455160.html
[24]
Britnell L, Gorbachev R V, Jalil R, et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett, 2012, 12(3):1707 doi: 10.1021/nl3002205
[25]
Min S C, Lee G H, Yu Y J, et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat Commun, 2013, 4(3):1624 http://www.academia.edu/5869580/Controlled_charge_trapping_by_molybdenum_disulphide_and_graphene_in_ultrathin_heterostructured_memory_devices
[26]
Wang J, Yao Q, Huang C W, et al. High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv Mater, 2016, 28(37):8302 doi: 10.1002/adma.v28.37
[27]
Yang W, Chen G, Shi Z, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater, 2013, 12(9):792 doi: 10.1038/nmat3695
[28]
Nourbakhsh A, Zubair A, Dresselhaus M S, et al. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett, 2016, 16(2):1359 doi: 10.1021/acs.nanolett.5b04791
[29]
Li H, Wu J, Huang X, et al. A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano, 2014, 8(7):6563 doi: 10.1021/nn501779y
[30]
Haigh S J, Gholinia A, Jalil R, et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat Mater, 2012, 11(9):764 doi: 10.1038/nmat3386
[31]
Kretinin A V, Cao Y, Tu J S, et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett, 2014, 14(6):3270 doi: 10.1021/nl5006542
[32]
Mishchenko A, Tu J S, Cao Y, et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat Nanotechnol, 2014, 9(10):808 doi: 10.1038/nnano.2014.187
[33]
Tang S, Wang H, Zhang Y, et al. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Sci Rep, 2013, 3:2666 http://www.oalib.com/paper/3401588
[34]
Lin Y C, Ghosh R K, Addou R, et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat Commun, 2015, 6(33):1 http://libtreasures.utdallas.edu/xmlui/handle/10735.1/4586
[35]
Miwa J A, Dendzik M, Groborg S S, et al. Van der Waals epitaxy of two-dimensional MoS2-graphene heterostructures in ultrahigh vacuum. Acs Nano, 2015, 9(6):6502 doi: 10.1021/acsnano.5b02345
[36]
Shi Y, Zhou W, Lu A Y, et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett, 2012, 12(6):2784 doi: 10.1021/nl204562j
[37]
Li X, Basile L, Huang B, et al. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene. Acs Nano, 2015, 9(8):8078 doi: 10.1021/acsnano.5b01943
[38]
Gong Y, Lin J, Wang X, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater, 2014, 13(12):1135 doi: 10.1038/nmat4091
[39]
Huang C, Wu S, Sanchez A M, et al. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat Mater, 2014, 13(12):1096 doi: 10.1038/nmat4064
[40]
Li X, Lin M W, Lin J, et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci Adv, 2016, 2(4):e1501882 doi: 10.1126/sciadv.1501882
[41]
Li B, Huang L, Zhong M, et al. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv Electron Mater, 2016, 2:1600298 doi: 10.1002/aelm.v2.11
[42]
Yu W J, Li Z, Zhou H, et al. Vertically stacked multiheterostructures of layered materials for logic transistors and complementary inverters. Nat Mater, 2013, 12(3):246 https://www.researchgate.net/profile/Y_Huang9/publication/233930032_Vertically_stacked_multi-heterostructures_of_layered_materials_for_logic_transistors_and_complementary_inverters/links/53df79fe0cf2aede4b49001c.pdf?origin=publication_detail
[43]
Moriya R, Yamaguchi T, Inoue Y, et al. Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures. Appl Phys Lett, 2014, 105(8):083119 doi: 10.1063/1.4894256
[44]
Britnell L, Gorbachev R V, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335(6071):947 doi: 10.1126/science.1218461
[45]
Zhou G, Li R, Vasen T, et al. Novel gate-recessed vertical InAs/GaSb TFETs with record high ION of 180μA/μm at VDS D 0:5 V. IEEE International Electron Devices Meeting (IEDM), 2012:32.6.1
[46]
Li M O, Esseni D, Snider G, et al. Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor. J Appl Phys, 2014, 115(7):074508 doi: 10.1063/1.4866076
[47]
Roy T, Tosun M, Cao X, et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano, 2015, 9(2):2071 doi: 10.1021/nn507278b
[48]
Roy T, Tosun M, Hettick M, et al. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Appl Phys Lett, 2016, 108(8):083111 doi: 10.1063/1.4942647
[49]
Sarkar D, Xie X, Liu W, et al. A subthermionic tunnel fieldeffect transistor with an atomically thin channel. Nature, 2015, 526(7571):91 doi: 10.1038/nature15387
[50]
Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138):1311 http://graphene.nus.edu.sg/content/biblio/strong-light-matter-interactions-heterostructures-atomically-thin-films
[51]
Fang H, Battaglia C, Carraro C, et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc National Academy of Sciences, 2014, 111(17):6198 doi: 10.1073/pnas.1405435111
[52]
Lee C H, Lee G H, Van Der Zande A M, et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat Nanotechnol, 2014, 9(9):676 doi: 10.1038/nnano.2014.150
[53]
Furchi M M, Pospischil A, Libisch F, et al. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett, 2014, 14(8):4785 doi: 10.1021/nl501962c
[54]
Deng Y, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano, 2014, 8(8):8292 doi: 10.1021/nn5027388
[55]
Huo N, Kang J, Wei Z, et al. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv Funct Mater, 2014, 24(44):7025 doi: 10.1002/adfm.201401504
[56]
Choi M S, Qu D, Lee D, et al. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano, 2014, 8(9):9332 doi: 10.1021/nn503284n
[57]
Li H M, Lee D, Qu D, et al. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat Commun, 2015, 6:6564 doi: 10.1038/ncomms7564
[58]
Wang F, Wang Z, Xu K, et al. Tunable GaTe-MoS2 van der Waals p-n Junctions with novel optoelectronic performance. Nano Lett, 2015, 15:7558 doi: 10.1021/acs.nanolett.5b03291
[59]
Long M, Liu E, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett, 2016, 16(4):2254 doi: 10.1021/acs.nanolett.5b04538
[60]
Cheng R, Li D, Zhou H, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett, 2014, 14(10):5590 doi: 10.1021/nl502075n
[61]
Withers F, Pozo-Zamudio O D, Mishchenko A, et al. Lightemitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater, 2015, 14(3):301 doi: 10.1038/nmat4205
[62]
Withers F, Del P Z O, Schwarz S, et al. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett, 2015, 15(12):8223 doi: 10.1021/acs.nanolett.5b03740
Fig. 1.  (Color online) The broad library of two-dimensional materials. (a) Two-dimensional materials library covering from conductor to insulator. (b) Energy level of two-dimensional materials compared with that of Si [9].

Fig. 2.  (Color online) Pick up and dry transfer techniques for building van der Waals heterostructure.

Fig. 3.  (Color online) Illustration of "polymer free" assembly process and high-resolution TEM images of the multilayer structure. (a) Schematic of the polymer-free van der Waals assembly process. (b) Optical image of a h-BN/G/h-BN heterostructure assembled according to panel. (c) AFM images of single layer. (d) High-resolution cross-sectional HRTEM images of the multilayer structure, showing wrinkle-free and atomically clean interfaces.

Fig. 4.  (Color online) Growth of MoS2/WSe2 and WSe2/MoSe2 heterostructures on epitaxial graphene. (a) Schematics of the growth of MoS2/WSe2/graphene (top) and WSe2/MoSe2/graphene (bottom). (b) AFM images of MoS2/WSe2 heterostructures. (c) Conductive AFM image of WSe2/MoSe2 heterostructures. (d) Experimental I -V traces for different combination of dichalcogenide-graphene interfaces demonstrating NDR.

Fig. 5.  (Color online) Structure and properties of vertical field-effect transistors.

Fig. 6.  (Color online) MoS2-germanium tunneling transistor. (a) Structure of the MoS2-germanium tunneling transistor. (b) Transfer properties of tunneling transistor.

Fig. 7.  (Color online) WSe2/MoS2 heterojunction electric properties and band profiles. (a) Schematic of MoS2/WSe2 van der Waals heterojunction. (b) Current-voltage curves at various gate voltages measured across the junction. (c) Band profiles and majority carriers’ recombination of majority carriers.

Fig. 8.  (Color online) Heterostructure devices with MQW. (a) Schematic and STEM image of the MQW heterostructure. (b) Band diagrams for the case of zero applied bias of MQW. (c) Temperature dependence of EQE for LED device.

Table 1.   Summary of photo-detectors' performances

Devices Thickness FF EQE(%) H (%) Rph(A/W) Detectivity (Jones)
MoS2/WSe2 [52] multilayer/multilayer~40~0.125
MoS2/WSe2 [53] monolayer / monolayer~0.51.50.2
BP/MoS2[54]11 nm / monolayer0.50.33.54
MoS2/WSe2 [55] multilayer /multilayer1.42
MoS2/WSe2 [56] 2-60 nm5.073×1010
MoS2/WSe2 [57] 11 nm0.220.03
GaTe/MoS[58]14.1/5.5 nm0.4261.680.4521.838.4×1013
DownLoad: CSV
[1]
Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30):10451 doi: 10.1073/pnas.0502848102
[2]
Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3):183 doi: 10.1038/nmat1849
[3]
Gao H, Liu Z, Feng X. From 2004 to 2014:a fruitful decade for graphene research in China. Small, 2014, 10(11):2121 doi: 10.1002/smll.201400915
[4]
Jariwala D, Sangwan V K, Lauhon L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8(2):1102 doi: 10.1021/nn500064s
[5]
Chhowalla M, Shin H S, Eda G, et al. The chemistry of twodimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5(4):263 doi: 10.1038/nchem.1589
[6]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459):419 doi: 10.1038/nature12385
[7]
Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc National Academy of Sciences of the United States of America, 2005, 102(30):10451 doi: 10.1073/pnas.0502848102
[8]
Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5(10):722 doi: 10.1038/nnano.2010.172
[9]
Jena D. Tunneling transistors based on graphene and 2-D crystals. Proc IEEE, 2013, 101(7):1585 doi: 10.1109/JPROC.2013.2253435
[10]
Roy T, Tosun M, Kang J S, et al. Field-effect transistors built from all two-dimensional material components. ACS Nano, 2014, 8(6):6259 doi: 10.1021/nn501723y
[11]
Allain A, Kang J, Banerjee K, et al. Electrical contacts to twodimensional semiconductors. Nat Mater, 2015, 14(12):1195 doi: 10.1038/nmat4452
[12]
Das S, Chen H Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett, 2012, 13(1):100
[13]
Liu Y, Wu H, Cheng H C, et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett, 2015, 15(5):3030 doi: 10.1021/nl504957p
[14]
D Qu, X Liu, Ahmed F, et al. Self-screened high performance multi-layer MoS2 transistor formed by using a bottom graphene electrode. Nanoscale, 2015, 7(45):19273 doi: 10.1039/C5NR06076A
[15]
Mak K F, Lee C, Hone J, et al. Atomically thin MoS2:a new direct-gap semiconductor. Phys Rev Lett, 2010, 105(13):136805 doi: 10.1103/PhysRevLett.105.136805
[16]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3):147 doi: 10.1038/nnano.2010.279
[17]
Podzorov V, Gershenson M E, Kloc C, et al. High-mobility fieldeffect transistors based on transition metal dichalcogenides. Appl Phys Lett, 2004, 84(17):3301 doi: 10.1063/1.1723695
[18]
Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B, 2014, 89(23):235319 doi: 10.1103/PhysRevB.89.235319
[19]
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5):372 doi: 10.1038/nnano.2014.35
[20]
Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett, 2014, 14(11):6414 doi: 10.1021/nl502928y
[21]
Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus:an emerging infrared and mid-infrared optical material. Opt Express, 2015, 23(9):11183 doi: 10.1364/OE.23.011183
[22]
Mayorov A S, Gorbachev R V, Morozov S V, et al. Micrometerscale ballistic transport in encapsulated graphene at room temperature. Nano Lett, 2011, 11(6):2396 doi: 10.1021/nl200758b
[23]
Meric I, Dean C, Young A. Graphene field-effect transistors based on boron nitride gate dielectrics. Physics, 2011, 100(23):23.2.1 http://www.docin.com/p-365455160.html
[24]
Britnell L, Gorbachev R V, Jalil R, et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett, 2012, 12(3):1707 doi: 10.1021/nl3002205
[25]
Min S C, Lee G H, Yu Y J, et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat Commun, 2013, 4(3):1624 http://www.academia.edu/5869580/Controlled_charge_trapping_by_molybdenum_disulphide_and_graphene_in_ultrathin_heterostructured_memory_devices
[26]
Wang J, Yao Q, Huang C W, et al. High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv Mater, 2016, 28(37):8302 doi: 10.1002/adma.v28.37
[27]
Yang W, Chen G, Shi Z, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater, 2013, 12(9):792 doi: 10.1038/nmat3695
[28]
Nourbakhsh A, Zubair A, Dresselhaus M S, et al. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett, 2016, 16(2):1359 doi: 10.1021/acs.nanolett.5b04791
[29]
Li H, Wu J, Huang X, et al. A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano, 2014, 8(7):6563 doi: 10.1021/nn501779y
[30]
Haigh S J, Gholinia A, Jalil R, et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat Mater, 2012, 11(9):764 doi: 10.1038/nmat3386
[31]
Kretinin A V, Cao Y, Tu J S, et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett, 2014, 14(6):3270 doi: 10.1021/nl5006542
[32]
Mishchenko A, Tu J S, Cao Y, et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat Nanotechnol, 2014, 9(10):808 doi: 10.1038/nnano.2014.187
[33]
Tang S, Wang H, Zhang Y, et al. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Sci Rep, 2013, 3:2666 http://www.oalib.com/paper/3401588
[34]
Lin Y C, Ghosh R K, Addou R, et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat Commun, 2015, 6(33):1 http://libtreasures.utdallas.edu/xmlui/handle/10735.1/4586
[35]
Miwa J A, Dendzik M, Groborg S S, et al. Van der Waals epitaxy of two-dimensional MoS2-graphene heterostructures in ultrahigh vacuum. Acs Nano, 2015, 9(6):6502 doi: 10.1021/acsnano.5b02345
[36]
Shi Y, Zhou W, Lu A Y, et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett, 2012, 12(6):2784 doi: 10.1021/nl204562j
[37]
Li X, Basile L, Huang B, et al. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene. Acs Nano, 2015, 9(8):8078 doi: 10.1021/acsnano.5b01943
[38]
Gong Y, Lin J, Wang X, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater, 2014, 13(12):1135 doi: 10.1038/nmat4091
[39]
Huang C, Wu S, Sanchez A M, et al. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat Mater, 2014, 13(12):1096 doi: 10.1038/nmat4064
[40]
Li X, Lin M W, Lin J, et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci Adv, 2016, 2(4):e1501882 doi: 10.1126/sciadv.1501882
[41]
Li B, Huang L, Zhong M, et al. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv Electron Mater, 2016, 2:1600298 doi: 10.1002/aelm.v2.11
[42]
Yu W J, Li Z, Zhou H, et al. Vertically stacked multiheterostructures of layered materials for logic transistors and complementary inverters. Nat Mater, 2013, 12(3):246 https://www.researchgate.net/profile/Y_Huang9/publication/233930032_Vertically_stacked_multi-heterostructures_of_layered_materials_for_logic_transistors_and_complementary_inverters/links/53df79fe0cf2aede4b49001c.pdf?origin=publication_detail
[43]
Moriya R, Yamaguchi T, Inoue Y, et al. Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures. Appl Phys Lett, 2014, 105(8):083119 doi: 10.1063/1.4894256
[44]
Britnell L, Gorbachev R V, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335(6071):947 doi: 10.1126/science.1218461
[45]
Zhou G, Li R, Vasen T, et al. Novel gate-recessed vertical InAs/GaSb TFETs with record high ION of 180μA/μm at VDS D 0:5 V. IEEE International Electron Devices Meeting (IEDM), 2012:32.6.1
[46]
Li M O, Esseni D, Snider G, et al. Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor. J Appl Phys, 2014, 115(7):074508 doi: 10.1063/1.4866076
[47]
Roy T, Tosun M, Cao X, et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano, 2015, 9(2):2071 doi: 10.1021/nn507278b
[48]
Roy T, Tosun M, Hettick M, et al. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Appl Phys Lett, 2016, 108(8):083111 doi: 10.1063/1.4942647
[49]
Sarkar D, Xie X, Liu W, et al. A subthermionic tunnel fieldeffect transistor with an atomically thin channel. Nature, 2015, 526(7571):91 doi: 10.1038/nature15387
[50]
Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138):1311 http://graphene.nus.edu.sg/content/biblio/strong-light-matter-interactions-heterostructures-atomically-thin-films
[51]
Fang H, Battaglia C, Carraro C, et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc National Academy of Sciences, 2014, 111(17):6198 doi: 10.1073/pnas.1405435111
[52]
Lee C H, Lee G H, Van Der Zande A M, et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat Nanotechnol, 2014, 9(9):676 doi: 10.1038/nnano.2014.150
[53]
Furchi M M, Pospischil A, Libisch F, et al. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett, 2014, 14(8):4785 doi: 10.1021/nl501962c
[54]
Deng Y, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano, 2014, 8(8):8292 doi: 10.1021/nn5027388
[55]
Huo N, Kang J, Wei Z, et al. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv Funct Mater, 2014, 24(44):7025 doi: 10.1002/adfm.201401504
[56]
Choi M S, Qu D, Lee D, et al. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano, 2014, 8(9):9332 doi: 10.1021/nn503284n
[57]
Li H M, Lee D, Qu D, et al. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat Commun, 2015, 6:6564 doi: 10.1038/ncomms7564
[58]
Wang F, Wang Z, Xu K, et al. Tunable GaTe-MoS2 van der Waals p-n Junctions with novel optoelectronic performance. Nano Lett, 2015, 15:7558 doi: 10.1021/acs.nanolett.5b03291
[59]
Long M, Liu E, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett, 2016, 16(4):2254 doi: 10.1021/acs.nanolett.5b04538
[60]
Cheng R, Li D, Zhou H, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett, 2014, 14(10):5590 doi: 10.1021/nl502075n
[61]
Withers F, Pozo-Zamudio O D, Mishchenko A, et al. Lightemitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater, 2015, 14(3):301 doi: 10.1038/nmat4205
[62]
Withers F, Del P Z O, Schwarz S, et al. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett, 2015, 15(12):8223 doi: 10.1021/acs.nanolett.5b03740
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 6561 Times PDF downloads: 115 Times Cited by: 0 Times

    History

    Received: 31 October 2016 Revised: 27 November 2016 Online: Published: 01 March 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chao Li, Peng Zhou, David Wei Zhang. Devices and applications of van der Waals heterostructures[J]. Journal of Semiconductors, 2017, 38(3): 031005. doi: 10.1088/1674-4926/38/3/031005 ****C Li, P Zhou, D W Zhang. Devices and applications of van der Waals heterostructures[J]. J. Semicond., 2017, 38(3): 031005. doi: 10.1088/1674-4926/38/3/031005.
      Citation:
      Chao Li, Peng Zhou, David Wei Zhang. Devices and applications of van der Waals heterostructures[J]. Journal of Semiconductors, 2017, 38(3): 031005. doi: 10.1088/1674-4926/38/3/031005 ****
      C Li, P Zhou, D W Zhang. Devices and applications of van der Waals heterostructures[J]. J. Semicond., 2017, 38(3): 031005. doi: 10.1088/1674-4926/38/3/031005.

      Devices and applications of van der Waals heterostructures

      doi: 10.1088/1674-4926/38/3/031005
      Funds:

      Project supported by the National Key Research and Development Program No.2016YFA0203900

      and the National Natural Science Foundation of China Nos.61376093,61622401

      Project supported by the National Key Research and Development Program (No.2016YFA0203900) and the National Natural Science Foundation of China (Nos.61376093,61622401)

      More Information
      • Corresponding author: Peng Zhou,Email:pengzhou@fudan.edu.cn
      • Received Date: 2016-10-31
      • Revised Date: 2016-11-27
      • Published Date: 2017-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return