Citation: |
Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor[J]. Journal of Semiconductors, 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002
****
F J Liu, J W Wang, L Wang, X Y Cai, C Jiang, G T Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor[J]. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002.
|
Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor
doi: 10.1088/1674-4926/38/3/034002
More Information-
Abstract
Perovskite/MoS2 hybrid thin film transistor photodetectors consist of few-layered MoS2 and CH3NH3PbI3 film with various thickness prepared by two-step vacuum deposition. By implementing perovskite CH3NH3PbI3 film onto the MoS2 flake, the perovskite/MoS2 hybrid photodetector exhibited a photoresponsivity of 104A/W and fast response time of about 40 ms. Improvement of photodetection performance is attributed to the balance between light absorption in the perovskite layer and an effective transfer of photogenerated carriers from perovskite entering the MoS2 channel. This work may provide guidance to develop high-performance hybrid structure optoelectronic devices.-
Keywords:
- perovskite,
- MoS2,
- photodetector
-
References
[1] Sangwan V K, Jariwala D, Kim I S, et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat Nanotech, 2015, 10(5):403 doi: 10.1038/nnano.2015.56[2] Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 2013, 8(7):497 doi: 10.1038/nnano.2013.100[3] Gong Y J, Lin J H, Wang X L, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater, 2014, 13(12):1135 doi: 10.1038/nmat4091[4] Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016:16042[5] Li X, Lin M W, Lin J, et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci Adv, 2016, 2(4):e1501882 https://www.ornl.gov/content/two-dimensional-gasemose2-misfit-bilayer-heterojunctions-van-der-waals-epitaxy[6] Kim S, Konar A, Hwang W S, et al. High-mobility and lowpower thin-film transistors based on multilayer MoS2 crystals. Nat Commun, 2012, 3:1011 doi: 10.1038/ncomms2018[7] Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 2013, 8(7):497 doi: 10.1038/nnano.2013.100[8] Choi W, Cho M Y, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater, 2012, 24(43):5832 doi: 10.1002/adma.201201909[9] Yu S H, Lee Y, Jang S K, et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano, 2014, 8(8):8285 doi: 10.1021/nn502715h[10] Pak J, Jang J, Cho K, et al. Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine. Nanoscale, 2015, 7(44):18780 doi: 10.1039/C5NR04836B[11] Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv Mater, 2015, 27(1):176 doi: 10.1002/adma.v27.1[12] Kazim S, Nazeeruddin M K, Gratzel M, et al. Perovskite as light harvester:a game changer in photovoltaics. Angew Chem Int Edit, 2014, 53(11):2812 doi: 10.1002/anie.v53.11[13] Kim H S, Lee C R, Im J H, et al. Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2:7 https://www.researchgate.net/profile/Jacques-E_Moser/publication/230716542_Lead_Iodide_Perovskite_Sensitized_All-Solid-State_Submicron_Thin_Film_Mesoscopic_Solar_Cell_with_Efficiency_Exceeding_9/links/09e41506f09cb81b07000000.pdf?origin=publication_detail[14] Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240):1234 doi: 10.1126/science.aaa9272[15] Lee Y, Kwon J, Hwang E, et al. High-performance perovskitegraphene hybrid photodetector. Adv Mater, 2015, 27(1):41 doi: 10.1002/adma.v27.1[16] Kwak D H, Lim D H, Ra H S, et al. High performance hybrid graphene-CsPbBr3-xIx perovskite nanocrystal photodetector. RSC Adv, 2016, 6(69):65252 doi: 10.1039/C6RA08699C[17] Ma C, Shi Y M, Hu W J, et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv Mater, 2016, 28(19):3683 doi: 10.1002/adma.v28.19[18] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6(3):147 doi: 10.1038/nnano.2010.279[19] Shkrob I A, Marin T W. Charge trapping in photovoltaically active perovskites and related halogenoplumbate compounds. J Phys Chem Lett, 2014, 5(7):1066 doi: 10.1021/jz5004022[20] Kim J, Lee S H, Lee J H, et al. The role of intrinsic defects in methylammonium lead iodide perovskite. J Phys Chem Lett, 2014, 5(8):1312 doi: 10.1021/jz500370k[21] Dong R, Fang Y, Chae J, et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv Mater, 2015, 27(11):1912 doi: 10.1002/adma.v27.11[22] Zhang H, Cheng J Q, Lin F, et al. Pinhole-free and surfacenanostructured niox film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano, 2016, 10(1):1503 doi: 10.1021/acsnano.5b07043 -
Proportional views