Citation: |
Yuan Xu, Benkang Chang, Xinlong Chen, Yunsheng Qian. Comparative study on the influence of Al component at GaAlAs layer for GaAs/AlGaAs photocathode[J]. Journal of Semiconductors, 2017, 38(8): 083002. doi: 10.1088/1674-4926/38/8/083002
****
Y Xu, B K Chang, X L Chen, Y S Qian. Comparative study on the influence of Al component at GaAlAs layer for GaAs/AlGaAs photocathode[J]. J. Semicond., 2017, 38(8): 083002. doi: 10.1088/1674-4926/38/8/083002.
|
Comparative study on the influence of Al component at GaAlAs layer for GaAs/AlGaAs photocathode
DOI: 10.1088/1674-4926/38/8/083002
More Information
-
Abstract
We designed two transmission-mode GaAs/AlGaAs photocathodes with different AlxGa1-xAs layers, one has an AlxGa1-xAs layer with the Al component ranging from 0.9 to 0, and the other has a fixed Al component 0.7. Using the first-principle method, we calculated the electronic structure and absorption spectrum of AlxGa1-xAs at x=0, 0.25, 0.5, 0.75 and 1, calculation results suggest that with the increase of the Al component, the band gap of AlxGa1-xAs increases. Then we activated the two samples, and obtained the spectral response curves and quantum efficiency curves; it is found that sample 1 has a better shortwave response and higher quantum efficiency at short wavelengths. Combined with the band structure diagram of the transmission-mode GaAs/AlGaAs photocathode and the fitted performance parameters, we analyze the phenomenon. It is found that the transmission-mode GaAs/AlGaAs photocathode with variable Al component and various doping structure can form a two-stage built-in electric field, which improves the probability of shortwave response photoelectrons escaping to the vacuum. In conclusion, such a structure reduces the influence of back-interface recombination, improves the shortwave response of the transmission-mode photocathode. -
References
[1] Antonova L I, Denissov V P. High-efficiency photocathodes on the NEA-GaAs basis. Appl Surf Sci, 1997, 111(3):237 https://www.researchgate.net/publication/248189918_High-efficiency_photocathodes_on_the_NEA-GaAs_basis[2] Zhang Y J, Chang B K, Yang Z, et al. Distribution of carriers in gradient-doping transmission-mode GaAs photocathodes grown by molecular beam epitaxy. Chine Phys B, 2009, 18:4541 doi: 10.1088/1674-1056/18/10/074[3] Alley R, Aoyagi H, Clendenin J, et al. The Stanford linear accelerator polarized electron source. Nucl Instrum Methods Phys Res A, 1995, 365(1):1 doi: 10.1016/0168-9002(95)00450-5[4] Siggins T, Sinclair C, Bohn C, et al. Performance of a DC GaAs photocathode gun for the Jefferson lab FEL. Nucl Instrum Methods Phys Res A, 2004, 475(1-3):549 https://www.researchgate.net/publication/235678326_Performance_of_a_DC_GaAs_photocathode_gun_for_the_Jefferson_lab_FEL[5] Maruyama T, Brachmanna A, Clendenin J E, et al. A very high charge, high polarization gradient-doped strained GaAs photocathode. Nucl Instrum Methods Phys Res A, 2002, 492(1.2):199 http://www.academia.edu/12726532/A_very_high_charge_high_polarization_gradient-doped_strained_GaAs_photocathode[6] Baum A W, Spicer W E, Pease R F W, et al. Negative electron affinity photocathodes as high-performance electron sources. Part 1:achievement of ultrahigh brightness from an NEA photocathode. Proc SPIE, 1995, 2522:208 doi: 10.1117/12.221575[7] Antypas G A, Edgecumbe J. Glass-sealed GaAs-AlGaAs transmission photocathode. Appl Phys Lett, 1975, 26(7):371 doi: 10.1063/1.88183[8] Zou J J, Yang Z, Qiao J L, et al. On-line measurement system of GaAs photocathodes and its applications. Proc SPIE, 2007, 6782:67823D doi: 10.1117/12.745945[9] Feng C, Zhang Y J, Qian Y S. Theoretical revision of quantum efficiency formula for thin AlGaAs/GaAs photocathodes. Proc SPIE, 2014, 9270:92701F doi: 10.1117/12.2071392[10] Maruyama T, Prepost R, Garwin E L, et al. Enhanced electron spin polarization in photoemission from thin GaAs. Appl Phys Let, 1989, 55:1686 doi: 10.1063/1.102236[11] Chen X L, Y J Zhang, Chang B K, et al. Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer. Opt Commun, 2013, 287:35 doi: 10.1016/j.optcom.2012.09.030[12] Chen X L, Zhao J, Chang B K, et al. Comparison between exponential-doping reflection-mode GaAlAs and GaAs photocathodes. Acta Phys Sin, 2013, 62(3):037303 https://www.researchgate.net/publication/286575535_Comparison_between_exponential-doping_reflection-mode_GaAlAs_and_GaAs_photocathodes[13] Yang Z, Zou J J, Chang B K, et al. Research on the optimal thickness of transmission-mode exponential-doping GaAs photocathode. Acta Phys Sin, 2010, 59(6):4290(in Chinese) https://www.researchgate.net/publication/286546718_Research_on_the_optimal_thickness_of_transmission-mode_exponential-doping_GaAs_photocathode[14] Zhao J, Chang B K, Xiong Y J, et al. Influence of the active layer on exponential-doping Ga1-xAlxAs/GaAs photocathode performances. Chin J Electron Dev, 2011, 34(2):119(in Chinese) https://www.researchgate.net/publication/272609796_Research_on_Optical_Properties_of_Ga1-xAlxN_with_Different_Al_Component[15] Zou J J, Gao P, Yang Z, et al. Influence of active-layer thickness on reflection-mode GaAs photocathode. Acta Photon Sin, 2008, 37(6):1112(in Chinese) https://www.researchgate.net/publication/286546559_Influence_of_active-layer_thickness_on_reflection-mode_gaas_photocathode[16] Zhang Y J, Niu J, Zhao J, et al. Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes. J Appl Phys, 2010, 108:093108 doi: 10.1063/1.3504193[17] Zhang Y J, Niu J, Zhao J, et al. Effect of exponential-doping structure on quantum yield of transmission-mode GaAs photocathodes. Acta Phys Sin, 2011, 60(6):067301(in Chinese) https://www.researchgate.net/publication/286461785_Effect_of_exponential-doping_structure_on_quantum_yield_of_transmission-mode_GaAs_photocathodes[18] Romero M T, Cocoletzi G H, Takeuchi N. First principles calculations of the Sc adsorption on Si(001)-c(2×4). Surf Sci, 2012, 606(17/18):1382 https://www.researchgate.net/publication/303775359_Electronic_structures_of_p-type_impurity_in_ZrS2_monolayer[19] Kandemir E B, Gönül B, Barkema G T, et al. Modeling of the atomic structure and electronic properties of amorphous GaN1-xAsx. Comp Mater Sci, 2014, 82:100 doi: 10.1016/j.commatsci.2013.09.039[20] Hogan C, Paget D, Garreau Y, et al. Early stages of cesium adsorption on the As-rich c(2×8) reconstruction of GaAs(001):adsorption sites and Cs-induced chemical bonds. Phys Rev B, 2003, 68(20):205313 doi: 10.1103/PhysRevB.68.205313[21] Shirley R, Kraft M, Inderwildi O R. Electronic and optical properties of aluminum-doped anatase and rutile TiO2 from ab initio calculations. Phys Rev B, 2010, 81(7):075111 doi: 10.1103/PhysRevB.81.075111[22] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47(1):558(R) doi: 10.1103/PhysRevB.47.558[23] Yu X H, Du Y J, Chang B K, et al. Study on the electronic structure and optical properties of different Al constituent Ga1-xAlxAs. Optik, 2013, 124(20):4402 doi: 10.1016/j.ijleo.2013.03.008[24] Goldstein B. LEED-Auger characterization of GaAs during activation to negative electron affinity by the adsorption of Cs and O. Surf Sci, 1975, 47(1):143 doi: 10.1016/0039-6028(75)90280-0[25] Hutchby J A, Fudurich R L. Theoretical optimization and parametric study of n-on-p AlxGa1-xAs-GaAs graded band-gap solar cell. J Appl Phys, 1976, 47(7):3152 doi: 10.1063/1.323109[26] Chen X L, Zhao J, Chang B K, et al. Photoemission characteristics of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes. J Appl Phys, 2013, 113(21):213105 doi: 10.1063/1.4808291[27] Chang B K, Du X Q, Liu L, et al. Automatic recording system of dynamic spectral response and its applications. Proc SPIE, 2003, 5209:209 doi: 10.1117/12.505113[28] Zhang Y J, Niu J, Zou J J, et al. Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process. Appl Opt, 2010, 49(20):3935 doi: 10.1364/AO.49.003935[29] Chen X L, Zhang Y J, Chang B K, et al. Research on quantum efficiency formula for extended blue transmission-mode GaAlAs/GaAs photocathodes. Optoelectron Adv Mater, 2012, 6(1/2):307 https://www.researchgate.net/publication/286569015_Research_on_quantum_efficiency_formula_for_extended_blue_transmission-mode_GaAlAsGaAs_photocathodes -
Proportional views