Citation: |
Xinyu Ma, Baoxing Duan, Yintang Yang. A 500-600 MHz GaN power amplifier with RC-LC stability network[J]. Journal of Semiconductors, 2017, 38(8): 085003. doi: 10.1088/1674-4926/38/8/085003
****
X Y Ma, B X Duan, Y T Yang. A 500-600 MHz GaN power amplifier with RC-LC stability network[J]. J. Semicond., 2017, 38(8): 085003. doi: 10.1088/1674-4926/38/8/085003.
|
A 500-600 MHz GaN power amplifier with RC-LC stability network
DOI: 10.1088/1674-4926/38/8/085003
More Information
-
Abstract
A 500-600 MHz high-efficiency, high-power GaN power amplifier is designed and realized on the basis of the push-pull structure. The RC-LC stability network is proposed and applied to the power amplifier circuit for the first time. The RC-LC stability network can significantly reduce the high gain out the band, which eliminates the instability of the power amplifier circuit. The developed power amplifier exhibits 58.5 dBm (700 W) output power with a 17 dB gain and 85% PAE at 500-600 MHz, 300 μs, 20% duty cycle. It has the highest PAE in P-band among the products at home and abroad.-
Keywords:
- P-band,
- GaN,
- stability network,
- power amplifier,
- high efficiency
-
References
[1] Wang J Z. Development trend of wireless communication power amplifier. Electron Eng Prod World, 2004, 1:35 http://en.cnki.com.cn/Article_en/CJFDTOTAL-LDKJ200805012.htm[2] Cheng J H, Wu M H, Huang H T, et al. A K-band phase-locked loop in 0.18 m CMOS technology for vital sign detection radar. 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio), 2014:1 https://www.researchgate.net/publication/301412266_A_K-band_phase-locked_loop_in_018_mm_CMOS_technology_for_vital_sign_detection_radar[3] Chiu H C, Ke B Y. High p erformance Ⅴ-band GaAs power amplifier and low noise amplifier using low-loss transmission line technology. International High Speed Intelligent Communication Forum (HSIC), 2012:1 https://www.researchgate.net/publication/234045368_Design_and_Simulation_of_a_Ku-band_MMIC_Power_Amplifier[4] Zeng Y. The basic of microelectronic devices. Changsha:Hunan University Press, 2005[5] Cao P. The L-band broadband power amplifier design and implementation. Handan: Hebei University of Engineering, 2014 https://www.researchgate.net/publication/309339141_Design_and_implementation_of_broadband_60_Watts_power_amplifier[6] Kuo H C, Yue H L, Ou Y W, et al. A 60-GHz CMOS sub-harmonic RF receiver with integrated on-chip artificialmagnetic-conductor Yagi antenna and balun bandpass filter for very-short-range Gigabit communications. IEEE Trans Microw Theory Tech, 2013, 61:1681 doi: 10.1109/TMTT.2013.2247622[7] Cho Y S, Kang D, Kim J, et al. A dual power-mode multi-band power amplifier with envelope tracking for handset applications. IEEE Trans Microwave Theory Tech, 2013, 61:1608 doi: 10.1109/TMTT.2013.2250712[8] Liang X F. Stability analysis and design of X-band solid-state power amplifier. Modern Radar, 2007, 29(12):98 http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDLD200712026.htm[9] Zhai Y. Study on broadband power amplifier at 100-400 MHz. Wuhan: Huazhong University of Science and Technology, 2011 http://www.arworld.us/html/12100_rf_amplifier.asp[10] Yao X J, Li B. AlGaN/GaN HEMTs power amplifier MIC with power combining at C-band. Chin J Semicond, 2007, 28(4):514 http://www.oalib.com/paper/1522687[11] Wang Z, Gao S, Parkc W. As implement method for tunable load impedance matching network of power amplifier. IEEE ICMMT Chengdu, 2010:484 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005525237[12] Fang X H, Cheng K K M. Improving power utilization factor of broadband Doherty amplifier by using bandpass auxiliary transformer. IEEE Trans Microwave Theory Tech, 2015, 63:2811 doi: 10.1109/TMTT.2015.2447544[13] Li C L. Research on ultra-wideband power amplifier using GaN HEMT. Hangzhou: Hangzhou Dianzi University, 2013 https://www.researchgate.net/publication/304406972_An_ultra-wideband_power_amplifier_based_on_GaN_HEMT[14] Chiouhk, Liao H Y. Broadband and low-loss 1 W 9 transmission -line transform 0.18 m CMOS process. IEEE Electron Device Lett, 2010, 31(9):921 doi: 10.1109/LED.2010.2053693[15] Xia J, Zhu X W, Zhang L. A linearized 2-3.5 GHz highly efficient harmonic-tuned power amplifier exploiting stepped-impedance filtering matching network. IEEE Microwave Wireless Compons Lett, 2014, 24:602 doi: 10.1109/LMWC.2014.2324752[16] Tasker P J, Benedikt J. Waveform inspired models and the harmonic balance emulator. IEEE Microwave Mag, 2011, 12(2):38 doi: 10.1109/MMM.2010.940101[17] Ma C H, Pan W S, Shao S H, et al. A wideband Doherty power amplifier with 100 MHz instantaneous bandwidth for LTE-advanced applications. IEEE Microwave Wireless Compon Lett, 2013, 23:614 doi: 10.1109/LMWC.2013.2281412[18] Xia J, Zhu X W, Zhang L. A linearized 2-3.5 GHz highly efficient harmonic-tuned power amplifier exploiting stepped-impedance filtering matching network. Microwave Wireless Compon Lett, 2014 http://ieeexplore.ieee.org/document/6842681/[19] Krishnamurthy K, Martin J, Landberg B, et al. Wideband 400 W pulsed power GaN HEMT amplifiers. IEEE Microelectron, 2008, 3(1):303 http://ieeexplore.ieee.org/document/4633163/ -
Proportional views