J. Semicond. > 2018, Volume 39 > Issue 10 > 105002

SEMICONDUCTOR INTEGRATED CIRCUITS

A 0.9 V PSRR improved voltage reference using a wide-band cascaded current mode differentiator

Fanyang Li

+ Author Affiliations

 Corresponding author: Fanyang Li, t12046@fzu.edu.cn

DOI: 10.1088/1674-4926/39/10/105002

PDF

Turn off MathJax

Abstract: We present a voltage reference using a wide-band cascaded current mode differentiator, for the improved PSRR performance. Compared with the conventional references, the reference with the technique is mainly characterized by a two cascaded stages current mode signal differentiator. In the differentiator, a zero OTA Gm is proposed, to achieve the wide-band differential characteristic. With the technique, the PSRR beyond the pole’s corresponding frequency can be significantly improved with the minimum supply voltage only about VGS_PMOS + (VGS_NMOSVTH). Fabricated with a 0.18 μm CMOS process, with the 0.9 V supply voltage, the PSRR @ 20 MHz of the reference is achieved at −54 dB. Moreover, the power dissipation is 19 μW.

Key words: referencecurrent modedifferentiator



[1]
De Vita G, Iannaccone G. A sub-1-V, 10 ppm/C, nanopower voltage reference generator. IEEE J Solid-State Circuits, 2007, 42(7): 1536 doi: 10.1109/JSSC.2007.899077
[2]
Peng L J, Jin X L, Liu M L. Design and optimization of a low-noise voltage reference using chopper stabilization technique. Chin J Electron, 2017, 26(5): 981 doi: 10.1049/cje.2017.03.020
[3]
Ueno K, Hirose T, Asai T, et al. A 300 nW, 15 ppm/C, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs. IEEE Solid-State Circuits, 2009, 44(7): 2047 doi: 10.1109/JSSC.2009.2021922
[4]
Zhou Z, Zhu P S, Shi Y, et al. A CMOS voltage reference based on mutual compensation of Vtn and Vtp. IEEE Trans Circuits Syst II, 2012, 59(6): 341 doi: 10.1109/TCSII.2012.2195065
[5]
Chahardori M, Atarodi M, Sharifkhani M. A sub 1 V high PSRR CMOS bandgap voltage reference. J Microelectron, 2011, 42: 1057 doi: 10.1016/j.mejo.2011.06.010
[6]
Zhang W J, Zhao Y, Wang J, et al. A band-gap voltage reference for LDO circuit. Appl Mechan Mater, 2014, 599(6): 626
[7]
Zhang B, Feng Q Y. A high PSRR bandgap reference circuit. Microelectronics, 2010, 40(1): 58
[8]
Zhu Y M, Liu F, Yang Y J, et al. A –115 dB PSRR CMOS band gap reference with a novel voltage self-regulating technique. IEEE Trans Circuits Syst II, 2012, 59(6): 341 doi: 10.1109/TCSII.2012.2195065
[9]
Li F Y, Jiang H. A high-PSRR low dropout regulator in lnb using first–stage reference-included coarse-filtering technique. J Circuits Syst Comput, 2015, 24(2): 1550022 doi: 10.1142/S021812661550022X
[10]
Qu Y, Peng X H, Hou L G, et al. A 0.662 ppm/°C high PSRR CMOS bandgap voltage reference. 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2016: 1363
[11]
Wang L D, Zhan C C, Zhao S X, et al. Design of high-PSRR current-mode bandgap reference with improved frequency compensation. IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2016: 410
[12]
Ardalan S, Chen D, Sachdev M, et al. Current mode sense amplifier. 48th IEEE Midw Symp Circuits Syst, 2005: 17
[13]
Park C J, Onabajo M, Silva-Martinaz J. External capacitor-lesss low drop-out regulator with 25 dB superior power supply rejection in the 0.4–4 MHz range. IEEE J Solid-State Circuits, 2014, 49(2): 486 doi: 10.1109/JSSC.2013.2289897
[14]
Zhao J, Peng X H, Hou L G, et al. A 12.42 μA 0.192 ppm/°C high PSRR curvature-compensated CMOS bandgap voltage reference. 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM), 2017: 191
[15]
Liu Y, Zhan C C, Wang L D, et al. A 0.4-V wide temperature range all-MOSFET subthreshold voltage reference with 0.027%/v line sensitivity. IEEE Trans Circuits Syst II, 2018, 99: 1
[16]
Kushwaha D, Mishra D K. A nano power voltage reference generator using of sub threshold MOSFETs. International Conference on Information, Communication, Instrumentation and Control (ICICIC), 2017: 1
[17]
Kushwaha D, Mishra D K. A 415 nW 0.8 V voltage reference circuit using MOSFETs in saturation and sub-threshold regions. 11th International Conference on Industrial and Information Systems (ICIIS), 2016: 149
[18]
Zeng Y H, Li Y A, Zhang X, et al. Ultra-low-power, high PSRR CMOS voltage reference with negative feedback. IET Circuits, Devices & Systems, 2017, 11(6): 535
Fig. 1.  (a) The typical reference with the cascaded topology. (b) The reference with the current mode feedforward path.

Fig. 2.  The topology of the proposed reference’s core.

Fig. 3.  (a) The supply voltage noise transferring circuit. (b) The current generator. (c) The error amplifier. (d) The voltage generator.

Fig. 4.  An illustration of the proposed differentiator.

Fig. 5.  (Color online) An illustration of the signal processing in the differentiator.

Fig. 6.  (Color online) The illustration of the reference signal processing.

Fig. 7.  (Color online) The prototype of the proposed reference. 1: The voltage reference. 2: The proposed differentiator.

Fig. 8.  (Color online) An illustration of the reference transient response at the supply noise 20 MHz.

Fig. 9.  (Color online) An illustration of the reference PSRR performance.

Fig. 10.  (Color online) The characteristics of temperature irrelevant voltage.

Fig. 11.  (Color online) The measurement of the reference quiescent power.

Table 1.   The sizes of the key devices

Key device Value Key device Value
M4 5 μm/0.5 μm M16 15 μm/0.5 μm
M5 20 μm/0.5 μm M17 15 μm/0.5 μm
M10 15 μm/0.5 μm Ccomp 1 pF
M11 15 μm/0.5 μm C 1 pF
M12 30 μm/0.5 μm Rc 300 kΩ
M13 30 μm/0.5 μm Cz 100 fF
DownLoad: CSV

Table 2.   Performance comparison.

Parameter Process technology (μm) Supply voltage (V) Power (μW) PSRR (dB)
Ref. [1] 0.35 0.9 / −40 @ 10 MHz
Ref. [4] 0.35 3 24 /
Ref. [8] 0.18 3.3 252 −90 @ 10 MHz
Ref. [10] 0.35 3.3 / −30 @ 1 MHz
Ref. [14] 0.35 3.3 40 −54 @ 20 MHz
Ref. [16] 0.18 1.8 / −35 @ 10 MHz
Ref. [18] 0.18 2.5 0.5 −64 @ 1 kHz
This work 0.18 0.9 19 −54 @ 20 MHz
DownLoad: CSV
[1]
De Vita G, Iannaccone G. A sub-1-V, 10 ppm/C, nanopower voltage reference generator. IEEE J Solid-State Circuits, 2007, 42(7): 1536 doi: 10.1109/JSSC.2007.899077
[2]
Peng L J, Jin X L, Liu M L. Design and optimization of a low-noise voltage reference using chopper stabilization technique. Chin J Electron, 2017, 26(5): 981 doi: 10.1049/cje.2017.03.020
[3]
Ueno K, Hirose T, Asai T, et al. A 300 nW, 15 ppm/C, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs. IEEE Solid-State Circuits, 2009, 44(7): 2047 doi: 10.1109/JSSC.2009.2021922
[4]
Zhou Z, Zhu P S, Shi Y, et al. A CMOS voltage reference based on mutual compensation of Vtn and Vtp. IEEE Trans Circuits Syst II, 2012, 59(6): 341 doi: 10.1109/TCSII.2012.2195065
[5]
Chahardori M, Atarodi M, Sharifkhani M. A sub 1 V high PSRR CMOS bandgap voltage reference. J Microelectron, 2011, 42: 1057 doi: 10.1016/j.mejo.2011.06.010
[6]
Zhang W J, Zhao Y, Wang J, et al. A band-gap voltage reference for LDO circuit. Appl Mechan Mater, 2014, 599(6): 626
[7]
Zhang B, Feng Q Y. A high PSRR bandgap reference circuit. Microelectronics, 2010, 40(1): 58
[8]
Zhu Y M, Liu F, Yang Y J, et al. A –115 dB PSRR CMOS band gap reference with a novel voltage self-regulating technique. IEEE Trans Circuits Syst II, 2012, 59(6): 341 doi: 10.1109/TCSII.2012.2195065
[9]
Li F Y, Jiang H. A high-PSRR low dropout regulator in lnb using first–stage reference-included coarse-filtering technique. J Circuits Syst Comput, 2015, 24(2): 1550022 doi: 10.1142/S021812661550022X
[10]
Qu Y, Peng X H, Hou L G, et al. A 0.662 ppm/°C high PSRR CMOS bandgap voltage reference. 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2016: 1363
[11]
Wang L D, Zhan C C, Zhao S X, et al. Design of high-PSRR current-mode bandgap reference with improved frequency compensation. IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2016: 410
[12]
Ardalan S, Chen D, Sachdev M, et al. Current mode sense amplifier. 48th IEEE Midw Symp Circuits Syst, 2005: 17
[13]
Park C J, Onabajo M, Silva-Martinaz J. External capacitor-lesss low drop-out regulator with 25 dB superior power supply rejection in the 0.4–4 MHz range. IEEE J Solid-State Circuits, 2014, 49(2): 486 doi: 10.1109/JSSC.2013.2289897
[14]
Zhao J, Peng X H, Hou L G, et al. A 12.42 μA 0.192 ppm/°C high PSRR curvature-compensated CMOS bandgap voltage reference. 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM), 2017: 191
[15]
Liu Y, Zhan C C, Wang L D, et al. A 0.4-V wide temperature range all-MOSFET subthreshold voltage reference with 0.027%/v line sensitivity. IEEE Trans Circuits Syst II, 2018, 99: 1
[16]
Kushwaha D, Mishra D K. A nano power voltage reference generator using of sub threshold MOSFETs. International Conference on Information, Communication, Instrumentation and Control (ICICIC), 2017: 1
[17]
Kushwaha D, Mishra D K. A 415 nW 0.8 V voltage reference circuit using MOSFETs in saturation and sub-threshold regions. 11th International Conference on Industrial and Information Systems (ICIIS), 2016: 149
[18]
Zeng Y H, Li Y A, Zhang X, et al. Ultra-low-power, high PSRR CMOS voltage reference with negative feedback. IET Circuits, Devices & Systems, 2017, 11(6): 535
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3820 Times PDF downloads: 63 Times Cited by: 0 Times

    History

    Received: 27 February 2018 Revised: 31 March 2018 Online: Uncorrected proof: 25 May 2018Published: 09 October 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Fanyang Li. A 0.9 V PSRR improved voltage reference using a wide-band cascaded current mode differentiator[J]. Journal of Semiconductors, 2018, 39(10): 105002. doi: 10.1088/1674-4926/39/10/105002 ****F Y Li, A 0.9 V PSRR improved voltage reference using a wide-band cascaded current mode differentiator[J]. J. Semicond., 2018, 39(10): 105002. doi: 10.1088/1674-4926/39/10/105002.
      Citation:
      Fanyang Li. A 0.9 V PSRR improved voltage reference using a wide-band cascaded current mode differentiator[J]. Journal of Semiconductors, 2018, 39(10): 105002. doi: 10.1088/1674-4926/39/10/105002 ****
      F Y Li, A 0.9 V PSRR improved voltage reference using a wide-band cascaded current mode differentiator[J]. J. Semicond., 2018, 39(10): 105002. doi: 10.1088/1674-4926/39/10/105002.

      A 0.9 V PSRR improved voltage reference using a wide-band cascaded current mode differentiator

      DOI: 10.1088/1674-4926/39/10/105002
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61501122).

      More Information
      • Corresponding author: t12046@fzu.edu.cn
      • Received Date: 2018-02-27
      • Revised Date: 2018-03-31
      • Published Date: 2018-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return