J. Semicond. > 2018, Volume 39 > Issue 2 > 026003

SEMICONDUCTOR TECHNOLOGY

An anisotropic thermal-stress model for through-silicon via

Song Liu and Guangbao Shan

+ Author Affiliations

 Corresponding author: Guangbao Shan, email: 18092060235@189.cn

DOI: 10.1088/1674-4926/39/2/026003

PDF

Turn off MathJax

Abstract: A two-dimensional thermal-stress model of through-silicon via (TSV) is proposed considering the anisotropic elastic property of the silicon substrate. By using the complex variable approach, the distribution of thermal-stress in the substrate can be characterized more accurately. TCAD 3-D simulations are used to verify the model accuracy and well agree with analytical results (< ±5%). The proposed thermal-stress model can be integrated into stress-driven design flow for 3-D IC , leading to the more accurate timing analysis considering the thermal-stress effect.

Key words: 3-D ICthrough-silicon viathermal-stressTCAD simulation



[1]
Waldrop M M. More than Moore. Nature, 2016, 530(7589): 144 doi: 10.1038/530144a
[2]
Shen W W, Chen K N. Three-dimensional integrated circuit (3D IC) key technology: through-silicon via (TSV). Nanoscale Res Lett, 2017, 12(1): 56 doi: 10.1186/s11671-017-1831-4
[3]
Tsai H Y, Kuo C W. Thermal stress and failure location analysis for through silicon via in 3D integration. J Mechan, 2016, 32(01): 47
[4]
Johnson R W, Shen Y L. Analysis of thermal stress and its influence on carrier mobility in three-dimensional microelectronic chip stack. J Electron Pack, 2015, 137(2): 021011 doi: 10.1115/1.4029345
[5]
Ryu S K, Zhao Q, Hecker M, et al. Micro-Raman spectroscopy and analysis of near-surface stresses in silicon around through-silicon vias for three-dimensional interconnects. J Appl Phys, 2012, 111(6): 063513 doi: 10.1063/1.3696980
[6]
Athikulwongse K, Yang J S, Pan D Z, et al. Impact of mechanical stress on the full chip timing for through-silicon-via-based 3-D ICs. IEEE Trans Comput-Aid Des Integr Circuits Syst, 2013, 32(6): 905 doi: 10.1109/TCAD.2013.2237770
[7]
Chen C. Characterization of in-plane stress in TSV array—a unit model approach. Proceed IEEE, 2014: 2020
[8]
Marella S K, Sapatnekar S S. A holistic analysis of circuit performance variations in 3-D ICs with thermal and TSV-induced stress considerations. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2015, 23(7): 1308 doi: 10.1109/TVLSI.2014.2335154
[9]
Li Y, Pan D Z. An accurate semi-analytical framework for full-chip TSV-induced stress modeling. Proceedings of the 50th ACM ADAC, 2013: 181
[10]
McDonough C, Backes B, Wang W, et al. Thermal and spatial profiling of TSV-induced stress in 3DICs. Proc IEEE, 2011: 5D.2.1
[11]
Jung M, Mitra J, Pan D Z, et al. TSV stress-aware full-chip mechanical reliability analysis and optimization for 3D IC. Commun ACM, 2014, 57(1): 107 doi: 10.1145/2541883
[12]
Roh M H, Sharma A, Lee J H, et al. Extrusion suppression of TSV filling metal by Cu-W electroplating for three-dimensional microelectronic packaging. Metallurg Mater Transa A, 2015, 46(5): 2051 doi: 10.1007/s11661-015-2801-z
[13]
Timoshenko S P, Goodier J N. Theory of elasticity. New York: McGraw-Hill, 1951
[14]
Lekhnitskii S G. Anisotropic plates. New York: Science Publishers, Inc., 1968
[15]
Chiang C R. Thermal mismatch stress of a cylindrical inclusion in a cubic crystal. Eng Fract Mechan, 2008, 75(8): 2295 doi: 10.1016/j.engfracmech.2007.09.002
[16]
Lekhnitskij, S. G. Theory of the elasticity of anisotropic bodies. 1977
[17]
Interconnect T S. Manual and user guide. Synopsys, Inc, 2014
Fig. 1.  The solving steps of anisotropic thermal-stress of TSV.

Fig. 2.  (Color online) The schematic of traction-free.

Fig. 3.  (Color online) 3-D simulation structure in TCAD. (a) A quarter of the original TSV structure. (b) Simulation structure in mesh.

Fig. 4.  (Color online) The comparison of normal stress $\sigma _{\theta \theta }^{{\rm{si - eff}}} $ and $\sigma _{rr}^{{\rm{si - eff}}} $ between proposed model and TCAD simulations. (a) r = 2.5 μm. (b) r = 5 μm.

Table 1.   The parameters involved in the TCAD simulation.

Name Description Value
υCu Poisson’s ratio of Cu 0.343
αCu CTE of Cu (ppm/°C) 17.7
ECu Young’s module of Cu (GPa) 115.5
υ $_{\rm{sio}{_2}}$ Poisson’s ratio of SiO2 0.16
α $_{\rm{sio}{_2}}$ CTE of SiO2 (ppm/°C) 0.51
E $_{\rm{sio}{_2}}$ Young’s module of SiO2 (GPa) 71.7
υsi Poisson’s ratio of Si 0.28
αsi CTE of Si (ppm/°C) 3.05
Cij Stiffness of silicon with orthotropic material property (GPa) C11 = 165, C12 = 63.9, C44 = 79.6
a Radius of TSV (μm) 2.5 or 5
b-a Thickness of insulation layer 0.5
ΔT Temperature load (°C) −225
DownLoad: CSV
[1]
Waldrop M M. More than Moore. Nature, 2016, 530(7589): 144 doi: 10.1038/530144a
[2]
Shen W W, Chen K N. Three-dimensional integrated circuit (3D IC) key technology: through-silicon via (TSV). Nanoscale Res Lett, 2017, 12(1): 56 doi: 10.1186/s11671-017-1831-4
[3]
Tsai H Y, Kuo C W. Thermal stress and failure location analysis for through silicon via in 3D integration. J Mechan, 2016, 32(01): 47
[4]
Johnson R W, Shen Y L. Analysis of thermal stress and its influence on carrier mobility in three-dimensional microelectronic chip stack. J Electron Pack, 2015, 137(2): 021011 doi: 10.1115/1.4029345
[5]
Ryu S K, Zhao Q, Hecker M, et al. Micro-Raman spectroscopy and analysis of near-surface stresses in silicon around through-silicon vias for three-dimensional interconnects. J Appl Phys, 2012, 111(6): 063513 doi: 10.1063/1.3696980
[6]
Athikulwongse K, Yang J S, Pan D Z, et al. Impact of mechanical stress on the full chip timing for through-silicon-via-based 3-D ICs. IEEE Trans Comput-Aid Des Integr Circuits Syst, 2013, 32(6): 905 doi: 10.1109/TCAD.2013.2237770
[7]
Chen C. Characterization of in-plane stress in TSV array—a unit model approach. Proceed IEEE, 2014: 2020
[8]
Marella S K, Sapatnekar S S. A holistic analysis of circuit performance variations in 3-D ICs with thermal and TSV-induced stress considerations. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2015, 23(7): 1308 doi: 10.1109/TVLSI.2014.2335154
[9]
Li Y, Pan D Z. An accurate semi-analytical framework for full-chip TSV-induced stress modeling. Proceedings of the 50th ACM ADAC, 2013: 181
[10]
McDonough C, Backes B, Wang W, et al. Thermal and spatial profiling of TSV-induced stress in 3DICs. Proc IEEE, 2011: 5D.2.1
[11]
Jung M, Mitra J, Pan D Z, et al. TSV stress-aware full-chip mechanical reliability analysis and optimization for 3D IC. Commun ACM, 2014, 57(1): 107 doi: 10.1145/2541883
[12]
Roh M H, Sharma A, Lee J H, et al. Extrusion suppression of TSV filling metal by Cu-W electroplating for three-dimensional microelectronic packaging. Metallurg Mater Transa A, 2015, 46(5): 2051 doi: 10.1007/s11661-015-2801-z
[13]
Timoshenko S P, Goodier J N. Theory of elasticity. New York: McGraw-Hill, 1951
[14]
Lekhnitskii S G. Anisotropic plates. New York: Science Publishers, Inc., 1968
[15]
Chiang C R. Thermal mismatch stress of a cylindrical inclusion in a cubic crystal. Eng Fract Mechan, 2008, 75(8): 2295 doi: 10.1016/j.engfracmech.2007.09.002
[16]
Lekhnitskij, S. G. Theory of the elasticity of anisotropic bodies. 1977
[17]
Interconnect T S. Manual and user guide. Synopsys, Inc, 2014
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3710 Times PDF downloads: 50 Times Cited by: 0 Times

    History

    Received: 14 May 2017 Revised: 17 July 2017 Online: Uncorrected proof: 24 January 2018Accepted Manuscript: 02 February 2018Published: 02 February 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Song Liu, Guangbao Shan. An anisotropic thermal-stress model for through-silicon via[J]. Journal of Semiconductors, 2018, 39(2): 026003. doi: 10.1088/1674-4926/39/2/026003 ****S Liu, G B Shan. An anisotropic thermal-stress model for through-silicon via[J]. J. Semicond., 2018, 39(2): 026003. doi: 10.1088/1674-4926/39/2/026003.
      Citation:
      Song Liu, Guangbao Shan. An anisotropic thermal-stress model for through-silicon via[J]. Journal of Semiconductors, 2018, 39(2): 026003. doi: 10.1088/1674-4926/39/2/026003 ****
      S Liu, G B Shan. An anisotropic thermal-stress model for through-silicon via[J]. J. Semicond., 2018, 39(2): 026003. doi: 10.1088/1674-4926/39/2/026003.

      An anisotropic thermal-stress model for through-silicon via

      DOI: 10.1088/1674-4926/39/2/026003
      Funds:

      Project supported by the Aerospace Advanced Manufacturing Technology Research Joint Fund (No. U1537208).

      More Information
      • Corresponding author: email: 18092060235@189.cn
      • Received Date: 2017-05-14
      • Revised Date: 2017-07-17
      • Available Online: 2018-02-01
      • Published Date: 2018-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return