Citation: |
Zhenzhu Li, Wanjian Yin. Recent progress in Pb-free stable inorganic double halide perovskites[J]. Journal of Semiconductors, 2018, 39(7): 071003. doi: 10.1088/1674-4926/39/7/071003
****
Z Z Li, W J Yin, Recent progress in Pb-free stable inorganic double halide perovskites[J]. J. Semicond., 2018, 39(7): 071003. doi: 10.1088/1674-4926/39/7/071003.
|
Recent progress in Pb-free stable inorganic double halide perovskites
doi: 10.1088/1674-4926/39/7/071003
More Information-
Abstract
Although the power conversion efficiency (PCE) of CH3NH3PbI3-based solar cells has achieved 22.1%, which is comparable to commercialized thin-film CdTe and Cu(In,Ga)Se2 solar cells, the long-term stability is the main obstacle for the commercialization of perovskite solar cells. Recent efforts have been made to explore alternative inorganic perovskites, which were assumed to have better stability than organic-inorganic hybrid CH3NH3PbI3. In this short review, we will keep up with experiments and summarize recent progresses of inorganic double halide perovskite, in particular to Cs2AgBiBr6, Cs2AgInCl6, Cs2InBiBr6 and their family members. We will also share our opinions on the promise of such class of materials.-
Keywords:
- double perovskite,
- solar cell,
- Pb-free
-
References
[1] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050 doi: 10.1021/ja809598r[2] Seo J, Noh J H, Seok S I, et al. Rational strategies for efficient perovskite solar cells. Acc Chem Res, 2016, 49: 562 doi: 10.1021/acs.accounts.5b00444[3] Grancini G, Roldan-Carmona C, Zimmermann I, et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat Commun, 2017, 8: 15684 doi: 10.1038/ncomms15684[4] Noel N K, Stranks S D, Abate A, et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci, 2014, 7: 3061 doi: 10.1039/C4EE01076K[5] Hao F, Stoumpos C C, Duyen Hanh C, et al. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photon, 2014, 8: 489 doi: 10.1038/nphoton.2014.82[6] Hanusch F C, Wiesenmayer E, Mankel E, et al. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J Phys Chem Lett, 2014, 5: 2791 doi: 10.1021/jz501237m[7] Ju M G, Dai J, Ma L, et al. Lead-free mixed tin and germanium perovskites for photovoltaic application. J Am Chem Soc, 2017, 139: 8038 doi: 10.1021/jacs.7b04219[8] Giustino F, Snaith H J. Toward lead-free perovskite solar cells. ACS Energy Lett, 2016, 1: 1233 doi: 10.1021/acsenergylett.6b00499[9] Kojima N. Gold valence transition and phase diagram in the mixed-valence complexes, M2 [(AuX2)-X-I][(AuX4)-X-III] (M = Rb, Cs; X = Cl, Br, and I). Bull Chem Soc Jpn, 2000, 73: 1445 doi: 10.1246/bcsj.73.1445[10] McClure E T, Ball M R, Windl W, et al. Cs2AgBiX6(X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem Mater, 2016, 28: 1348 doi: 10.1021/acs.chemmater.5b04231[11] Slavney A H, Hu T, Lindenberg A M, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J Am Chem Soc, 2016, 138: 2138 doi: 10.1021/jacs.5b13294[12] Savory C N, Walsh A, Scanlon D O. Can Pb-free halide double perovskites support high-efficiency solar cells. Acs Energy Lett, 2016, 1: 949 doi: 10.1021/acsenergylett.6b00471[13] Filip M R, Hillman S, Haghighirad A A, et al. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment. J Phys Chem Lett, 2016, 7: 2579 doi: 10.1021/acs.jpclett.6b01041[14] Pan W C, Wu H D, Luo J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photon, 2017, 11: 726 doi: 10.1038/s41566-017-0012-4[15] Xiao Z, Meng W, Wang J, et al. Thermodynamic stability and defect chemistry of bismuth-based lead-free double perovskites. ChemSusChem, 2016, 9: 2628-2633 doi: 10.1002/cssc.201600771[16] Volonakis G, Filip M R, Haghighirad A A, et al. Lead-free halide double perovskites via heterovalent substitution of noble metals. J Phys Chem Lett, 2016, 7: 1254-9 doi: 10.1021/acs.jpclett.6b00376[17] Zhao X G, Yang D, Sun Y, et al. Cu–In halide perovskite solar absorbers. J Am Chem Soc, 2017, 139: 6718 doi: 10.1021/jacs.7b02120[18] Zhao X G, Yang J H, Fu Y, et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J Am Chem Soc, 2017, 139: 2630 doi: 10.1021/jacs.6b09645[19] Xiao Z, Du K Z, Meng W, et al. Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = Halogen) double perovskites: a combined density functional theory and experimental study. J Am Chem Soc, 2017, 139: 6054-6057 doi: 10.1021/jacs.7b02227[20] Xiao Z, Du K Z, Meng W, et al. Chemical origin of the stability difference between copper(I)- and silver(I)-based halide double perovskites. Angew Chem Int Edit, 2017, 56: 12107 doi: 10.1002/anie.201705113[21] Vargas B, Ramos E, Perez-Gutierrez E, et al. A direct bandgap copper-antimony halide perovskite. J Am Chem Soc, 2017, 139: 9116 doi: 10.1021/jacs.7b04119[22] Xiao Z, Meng W, Wang J, et al. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater Horiz, 2017, 4: 206 doi: 10.1039/C6MH00519E[23] Volonakis G, Haghighirad A A, Milot R L, et al. Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J Phys Chem Lett, 2017, 8: 772 doi: 10.1021/acs.jpclett.6b02682[24] Yin W J, Chen H Y, Shi T T, et al. Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries. Adv Electron Mater, 2015, 1: 1500044 doi: 10.1002/aelm.201500044[25] Yin W J, Shi T T, Yan Y F. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater, 2014, 26: 4653 doi: 10.1002/adma.v26.27[26] Yin W J, Shi T T, Yan Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104: 063903 doi: 10.1063/1.4864778[27] Yin W J, Yang J H, Kang J, et al. Halide perovskite materials for solar cells: a theoretical review. J Mater Chem A, 2015, 3: 8926 doi: 10.1039/C4TA05033A[28] Meng W, Wang X, Xiao Z, et al. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J Phys Chem Lett, 2017, 8: 2999 doi: 10.1021/acs.jpclett.7b01042[29] Volonakis G, Haghighirad A A, Snaith H J, et al. Route to stable lead-free double perovskites with the electronic structure of CH3NH3PbI3: a case for mixed-cation [Cs/CH3NH3/ CH(NH2)2]2InBiBr6. J Phys Chem Lett, 2017, 8: 3917-3924 doi: 10.1021/acs.jpclett.7b01584[30] Du K Z, Meng W, Wang X, et al. Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying. Angew Chem Int Ed Engl, 2017, 56: 8158 doi: 10.1002/anie.v56.28[31] Tran T T, Panella J R, Chamorro J R, et al. Designing indirect–direct bandgap transitions in double perovskites. Mater Horiz, 2017, 4: 688 doi: 10.1039/C7MH00239D -
Proportional views