J. Semicond. > 2019, Volume 40 > Issue 10 > 100202

RESEARCH HIGHLIGHTS

Mid-infrared lasers on silicon operating close to room temperature

Hongtao Lin

+ Author Affiliations
DOI: 10.1088/1674-4926/40/10/100202

PDF

Turn off MathJax

OPTOELECTRONIC DEVICE

ACS Photonics, 6, 1434 (2019) ACS Photonics, 6, 1434 (2019)

Mid-infrared (MIR) wavelength is strategical important band for thermal imaging, remote sensing, free space communication, etc. Recent progresses in integrated mid-infrared photonics on silicon offer an alternative platform for manufacturing low-cost and high-performance MIR system in high volumes. However, light source has always been a grand challenge for integrated photonics and it is even harder to monolithically integrate MIR laser on silicon which could be operated at room temperature.

A multi-institutional team of researchers, led by Prof. Shui-Qing Yu from University of Arkansas, have recently made significant improvement to optically pumped MIR lasers, which is made of GeSn monolithically integrated on silicon substrates, capable of covering lasing wavelength from 2 to 3 μm. The researchers could obtain high-quality direct bandgap GeSn alloy with 20% Sn composition, allowing a low lasing threshold and relatively high operation temperature being close to the room temperature. This process is CMOS compatible and can be easily monolithically integrated onto current silicon platform for low-cost, lightweight, compact, low-power consuming integrated mid-IR light sources.

Hongtao Lin (Zhejiang University, Hangzhou, China)

doi: 10.1088/1674-4926/40/10/10020210.1088/1674-4926/40/10/100202



1

Observation of exciton polariton condensation in a perovskite lattice at room temperature

Jun Zhang

Journal of Semiconductors, 2020, 41(3): 030201. doi: 10.1088/1674-4926/41/3/030201

2

Perovskite plasmonic lasers capable of mode modulation

Jingbi You

Journal of Semiconductors, 2019, 40(7): 070203. doi: 10.1088/1674-4926/40/7/070203

3

Supersymmetric laser arrays

Chuanbo Li , Ming Li

Journal of Semiconductors, 2019, 40(4): 040201. doi: 10.1088/1674-4926/40/4/040201

4

Enhanced room temperature ferromagnetism in Cr-doped ZnO nanoparticles prepared by auto-combustion method

Khizar-ul Haq, M. Irfan, Muhammad Masood, Murtaza Saleem, Tahir Iqbal, et al.

Journal of Semiconductors, 2018, 39(4): 043001. doi: 10.1088/1674-4926/39/4/043001

5

Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications

Kiran Diwate, Amit Pawbake, Sachin Rondiya, Rupali Kulkarni, Ravi Waykar, et al.

Journal of Semiconductors, 2017, 38(2): 023001. doi: 10.1088/1674-4926/38/2/023001

6

A simple chemical route to synthesize the umangite phase of copper selenide (Cu3Se2) thin film at room temperature

Balasaheb M. Palve, Sandesh R. Jadkar, Habib M. Pathan

Journal of Semiconductors, 2017, 38(6): 063003. doi: 10.1088/1674-4926/38/6/063003

7

Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes

Degang Zhao, Jing Yang, Zongshun Liu, Ping Chen, Jianjun Zhu, et al.

Journal of Semiconductors, 2017, 38(5): 051001. doi: 10.1088/1674-4926/38/5/051001

8

A nanostructured copper telluride thin film grown at room temperature by an electrodeposition method

S. S. Dhasade, S. H. Han, V. J. Fulari

Journal of Semiconductors, 2012, 33(9): 093002. doi: 10.1088/1674-4926/33/9/093002

9

Distributed feedback quantum cascade lasers operating in continuous-wave mode at λ ≈ 7.6 μm

Zhang Jinchuan, Wang Lijun, Liu Wanfeng, Liu Fengqi, Zhao Lihua, et al.

Journal of Semiconductors, 2012, 33(2): 024005. doi: 10.1088/1674-4926/33/2/024005

10

High temperature characterization of double base epilayer 4H-SiC BJTs

Zhang Qian, Zhang Yuming, Zhang Yimen, Wang Yuehu

Journal of Semiconductors, 2010, 31(11): 114005. doi: 10.1088/1674-4926/31/11/114005

11

A low power cyclic ADC design for a wireless monitoring system for orthopedic implants

Chen Yi, Li Fule, Chen Hong, Zhang Chun, Wang Zhihua, et al.

Journal of Semiconductors, 2009, 30(8): 085009. doi: 10.1088/1674-4926/30/8/085009

12

An ultra-low-power CMOS temperature sensor for RFID applications

Xu Conghui, Gao Peijun, Che Wenyi, Tan Xi, Yan Na , et al.

Journal of Semiconductors, 2009, 30(4): 045003. doi: 10.1088/1674-4926/30/4/045003

13

Room-temperature electroluminescence of p-ZnxMg1-xO:Na/n-ZnO p-n junction light emitting diode

Ye Zhizhen, Zhang Liqiang, Huang Jingyun, Zhang Yinzhu, Zhu Liping, et al.

Journal of Semiconductors, 2009, 30(8): 081001. doi: 10.1088/1674-4926/30/8/081001

14

Temperature: a critical parameter affecting the optical properties of porous silicon

Long Yongfu, Ge Jin, Ding Xunmin, Hou Xiaoyuan

Journal of Semiconductors, 2009, 30(6): 063002. doi: 10.1088/1674-4926/30/6/063002

15

Decarbonization and Decolorization of Large Sapphire Crystals Grown by the Temperature Gradient Technique

Xu Jun, Zhou Guoqing, Deng Peizhen, Si Jiliang, Qian Xiaobo, et al.

Chinese Journal of Semiconductors , 2006, 27(2): 245-248.

16

Single Mode Operation of Short-Cavity Quantum Cascade Lasers

Liu Fengqi, Guo Yu, Li Lu, Shao Ye, Liu Junqi, et al.

Chinese Journal of Semiconductors , 2006, 27(4): 679-682.

17

Temperature Dependence of Vacuum Rabi Splitting in a Single Quantum Dot-Semiconductor Microcavity

Zhu Kadi, Li Waisang

Chinese Journal of Semiconductors , 2006, 27(3): 489-493.

18

Lateral Oxidation in Vertical Cavity Surface Emitting Lasers

Liu Wenli, Hao Yongqin, Wang Yuxia, Jiang Xiaoguang, Feng Yuan, et al.

Chinese Journal of Semiconductors , 2006, 27(8): 1351-1354.

19

Temperature Distribution in Ridge Structure InGaN Laser Diodes and Its Influence on Device Characteristics

Li Deyao, Huang Yongzhen, Zhang Shuming, Chong Ming, Ye Xiaojun, et al.

Chinese Journal of Semiconductors , 2006, 27(3): 499-505.

20

Room Temperature Operation of Strain-Compensated 5.5μm Quantum Cascade Lasers

Lu Xiuzhen, Liu Fengqi, Liu Junqi, Jin Peng, Wang Zhanguo, et al.

Chinese Journal of Semiconductors , 2005, 26(12): 2267-2270.

  • Search

    Advanced Search >>

    GET CITATION

    Hongtao Lin. Mid-infrared lasers on silicon operating close to room temperature[J]. Journal of Semiconductors, 2019, 40(10): 100202. doi: 10.1088/1674-4926/40/10/100202
    H T Lin, Mid-infrared lasers on silicon operating close to room temperature[J]. J. Semicond., 2019, 40(10): 100202. doi: 10.1088/1674-4926/40/10/100202.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2706 Times PDF downloads: 30 Times Cited by: 0 Times

    History

    Received: Revised: Online: Published: 01 October 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hongtao Lin. Mid-infrared lasers on silicon operating close to room temperature[J]. Journal of Semiconductors, 2019, 40(10): 100202. doi: 10.1088/1674-4926/40/10/100202 ****H T Lin, Mid-infrared lasers on silicon operating close to room temperature[J]. J. Semicond., 2019, 40(10): 100202. doi: 10.1088/1674-4926/40/10/100202.
      Citation:
      Hongtao Lin. Mid-infrared lasers on silicon operating close to room temperature[J]. Journal of Semiconductors, 2019, 40(10): 100202. doi: 10.1088/1674-4926/40/10/100202 ****
      H T Lin, Mid-infrared lasers on silicon operating close to room temperature[J]. J. Semicond., 2019, 40(10): 100202. doi: 10.1088/1674-4926/40/10/100202.

      Mid-infrared lasers on silicon operating close to room temperature

      DOI: 10.1088/1674-4926/40/10/100202
      • Published Date: 2019-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return