Fig. 1.
(Color online) Schematic illustration of the DUV-LEDs structure.
Citation: |
Hideki Hirayama. Research status and prospects of deep ultraviolet devices[J]. Journal of Semiconductors, 2019, 40(12): 120301. doi: 10.1088/1674-4926/40/12/120301
****
H Hirayama, Research status and prospects of deep ultraviolet devices[J]. J. Semicond., 2019, 40(12): 120301. doi: 10.1088/1674-4926/40/12/120301.
|
Research status and prospects of deep ultraviolet devices
DOI: 10.1088/1674-4926/40/12/120301
More Information
-
References
[1] Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics, 2008, 2, 77 doi: 10.1038/nphoton.2007.293[2] Li D, Jiang K, Sun X, et al. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv Opt Photonics, 2018, 10, 43 doi: 10.1364/AOP.10.000043[3] Takano T, Mino T, Sakai J, et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl Phys Express, 2017, 10, 031002 doi: 10.7567/APEX.10.031002[4] Hodgkinson J, Tatam R P. Optical gas sensing: a review. Meas Sci Technol, 2013, 24, 012004 doi: 10.1088/0957-0233/24/1/012004[5] Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser. Nat Photonics, 2013, 7, 913 doi: 10.1038/nphoton.2013.277[6] Kneissl M, Seong T Y, Han J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat Photonics, 2019, 13, 233 doi: 10.1038/s41566-019-0359-9[7] Zhang Z, Kushimoto M, Sakai T, et al. A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Appl Phys Express, 2019, 12, 124003 doi: 10.7567/1882-0786/ab50e0[8] Ban K, Yamamoto J I, Takeda K, et al. Internal quantum efficiency of whole-composition-range AlGaN multi-quantum wells. Appl Phys Express, 2011, 4, 052101 doi: 10.1143/APEX.4.052101[9] Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol, 2011, 26, 014036 doi: 10.1088/0268-1242/26/1/014036[10] Simon J, Protasenko V, Lian C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Sciences, 2009, 327, 60 doi: 10.1126/science.1183226[11] Chang H, Chen Z, Li W, et al. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Appl Phys Lett, 2019, 114, 091107 doi: 10.1063/1.5081112[12] Hirayama H, Yatabe T, Noguchi N, et al. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett, 2007, 91, 71901 doi: 10.1063/1.2770662[13] Tian W, Yan W Y, Dai J N, et al. Effect of growth temperature of an AlN intermediate layer on the growth mode of AlN grown by MOCVD. J Phys D, 2013, 46, 065303 doi: 10.1088/0022-3727/46/6/065303[14] Shatalov M, Sun W, Lunev A, et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express, 2012, 5, 082101 doi: 10.1143/APEX.5.082101[15] Djavid M, Mi Z. Ehancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Appl Phys Lett, 2005, 108, 051102 doi: 10.1063/1.4941239[16] Jeon S R, Ren Z, Cui G, et al.Investigation of Mg doping in high-Al content p-type Al xGa1–xN (0.3 $\textstyle{\ll}$ x$\textstyle{\ll}$ 0.5). Appl Phys Lett, 2005, 86, 082107 doi: 10.1063/1.1867565[17] Nakarmi M L, Kim K H, Li J, et al. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl Phys Lett, 2003, 82, 3041 doi: 10.1063/1.1559444[18] Zhong H X, Shi J J, Zhang M, et al. Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN)5/(GaN)1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer. AIP Adv, 2015, 5, 227 doi: 10.1063/1.4905884 -
Proportional views