J. Semicond. > 2019, Volume 40 > Issue 3 > 032802

ARTICLES

Numerical simulation of UV LEDs with GaN and BGaN single quantum well

Asma Belaid and Abdelkader Hamdoune

+ Author Affiliations

 Corresponding author: Asma Belaid, Email: belaidaasma@gmail.com

DOI: 10.1088/1674-4926/40/3/032802

PDF

Turn off MathJax

Abstract: The objective of this work is to simulate a single quantum well ultraviolet light emitting diode (LED) based on AlGaN/GaN/AlGaN and AlGaN/BGaN/AlGaN, by using TCAD Silvaco simulator. The first structure has a GaN quantum well taken between two layers, of n-AlGaN and p-AlGaN. The second one has a BGaN quantum well instead of GaN. We fix the concentration of the boron in BGaN to only 1% and we vary the thickness of GaN and BGaN quantum well layer from 7 to 20 nm, for the two structures. As results, we obtain respectively for GaN-LED and BGaN-LED, a maximum current of 0.52 and 0.27 mA, a maximum power spectral density of 1.935 and 6.7 W cm−1 eV−1, a maximum spontaneous emission of 3.34 × 1028 and 3.43 × 1028 s−1 cm−3 eV−1, and a maximum Light output power of 0.56 and 0.89 mW.

Key words: gallium nitride (GaN)aluminum gallium nitride (AlGaN)boron gallium nitride (BGaN)UV light emitting diode (LED)



[1]
Hamdoune A. Elaboration du nitrure de gallium, étude de ses propriétés et applications. Thesis of Doctorate, University of Abou-Bakr Belkaid, Tlemcen, Algeria, 2006
[2]
Nakamura S. III-V nitride based light-emitting devices. Solid State Communications, 1997. 102: 237 doi: 10.1016/S0038-1098(96)00722-3
[3]
Masui H, Nakamura S, DenBaars S P, et al. Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges. IEEE Trans Electron Devices, 2010, 57: 88 doi: 10.1109/TED.2009.2033773
[4]
Hu H P, Zhou S J, Liu X T, et al. Effects of GaN/AlGaN/sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes. J Scientific Reports, 2017, 7, 44627 doi: 10.1038/srep44627
[5]
Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. J Semicond Sci Technol 2011, 26 , 014036 doi: 10.1088/0268-1242/26/1/014036
[6]
Kneissl M, Rass J. III nitride ultraviolet emitters. Springer Series in Materials Science 2016, 227, 1
[7]
Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides. J Nat Photonics 2008, 2, 77 doi: 10.1038/nphoton.2007.293
[8]
Nakamura S, Krames M R. History of gallium-nitride-based light-emitting diodes for illumination. Proc IEEE, 2013, 101(10), 2211 doi: 10.1109/JPROC.2013.2274929
[9]
Verzellesi G , Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: physic mechanisms remedies. J Appl Phys 2013, 114(7), 071101. doi: 10.1063/1.4816434
[10]
Yang W, Wang W, Lin Y, et al. Deposition of nonpolar mplane InGaN/GaN multiple quantum wells on LiGaO+(100) substrates. J Mater Chem C 2014, 2(5), 801 doi: 10.1039/C3TC31935K
[11]
Schubert M F, Xu J, Kim J K, et al. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett. 2008, 93(4), 041102. doi: 10.1063/1.2963029
[12]
Lin Z T, Wang H Y, Wang W L, et al. Employing low-temperature barriers to achieve strain-relaxed and high-performance GaN-based LEDs. J Opt Express, 2016, 24, 11886. doi: 10.1364/OE.24.011885
[13]
Hirayama H, Fujikawa S, Noguchi N, et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. J Phys Status Solidi A, 2009, 206, 1176 doi: 10.1002/pssa.v206:6
[14]
Takano T, Fujikawa S, Kondo Y, et al. Remarkable improvement in output power for an InAlGaN based ultraviolet LED by improving the crystalline quality of AlN/AlGaN templates. J Phys Status Solidi C, 2008, 5, 2102 doi: 10.1002/(ISSN)1610-1642
[15]
Lin Z T, Wang H T, Lin Y H, et al. Stress management on underlying GaN-based epitaxial films: A new vision for achieving high-performance LEDs on Si substrates. J Appl Phys, 2017, 122, 204503. doi: 10.1063/1.4993985
[16]
Meel K, Mahala P, Singh S. Design and fabrication of multi quantum well based GaN/InGaN blue LED. IOP Conf Ser: Mater Sci Eng, 2018, 331, 012008 doi: 10.1088/1757-899X/331/1/012008
[17]
Gautier S, Patriarche G, Moudakir T. Deep structural analysis of novel BGaN material layers grown by MOVPE. J Cryst Growth 2011, 315, 288 doi: 10.1016/j.jcrysgro.2010.08.042
[18]
Pease R S. An X-ray study of boron nitride. Acta Crystallogr. 1952, 5, 356. doi: 10.1107/S0365110X52001064
[19]
Herold A, Marzluf B, Perio P, et al. Inorganic reactions and methods. Formation of Ceramics Seances Acad Sci 1958, 246, 1866
[20]
Thomas J, Weston N E, O’connor T, et al. Boron nitride, thermal transformation to ordered-layer-lattice boron nitride. J Am Chem Soc 1962, 84, 4619. doi: 10.1021/ja00883a001
[21]
Wentorf R Jr. Cubic form of boron nitride. J Chem Phys, 1957, 26, 956. doi: 10.1063/1.1745964
[22]
Wentorf R Jr. Synthesis of the cubic form of boron nitride. J Chem Phys. 1961, 34, 809. doi: 10.1063/1.1731679
[23]
Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. J Adv Electron Mater. 2018, 4, 1600501 doi: 10.1002/aelm.201600501
[24]
Zhang X. Thin solid films electronic and photonic applications, 2013, 544, 2. doi: 10.1016/j.tsf.2013.07.001
[25]
Dreyer C E, Lyons J L, Janotti A, et al. Band alignments and polarization properties of BN polymorphs. Appl Phys Express, 2014, 7, 031001. doi: 10.7567/APEX.7.031001
[26]
Gunning B P, Moseley M W, Koleske D D, et al. Phase degradation in BxGa1-xN films grown at low temperature by metalorganic vapor phase epitaxy. J Cryst Growth, 2017, 464, 190. doi: 10.1016/j.jcrysgro.2016.10.054
[27]
Ougazzaden A, Gautier S, Moudakir T. Band gap bowing in BGaN thin films. Appl Phys Lett, 2008, 93, 083118 doi: 10.1063/1.2977588
[28]
Atlas User’s Manual; Silvaco International Inc. Santa Clara, CA, USA. Version: 2012
[29]
Lachebi A, Abid H, DrizMand Al-Douri Y. First-principles study of cubic BxGa1–xN alloys. Int J Nanoelectron, 2008, 1, 81 doi: 10.3906/.z-0902-3
[30]
Schubert E F. Light-emitting diodes. 2nd ed. Cambridge University Press, 2006, 432
[31]
Ambacher O, Dimitrov R, Stutzmann M, et al. Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices. J Phys Stat Sol, 1999, 216, 381 doi: 10.1002/(ISSN)1521-3951
Fig. 1.  (Color online) Schematic structure of UV LEDs with GaN and BGaN single quantum well.

Fig. 2.  (Color online) Injection current versus forward voltage for GaN-LED and BGaN-LED.

Fig. 3.  (Color online) Spontaneous emission of GaN-LED and BGaN-LED.

Fig. 4.  (Color online) Power spectral density of GaN-LED and BGaN-LED.

Fig. 5.  (Color online) Light output power of GaN-LED and BGaN-LED.

Fig. 6.  (Color online) Flux spectral density for GaN-LED and BGaN-LED.

Fig. 7.  (Color online) Gain TE for GaN-LED and BGaN-LED.

Fig. 8.  (Color online) External quantum efficiency for GaN-LED and BGaN-LED.

Table 1.   Summarized values of spontaneous emission for GaN-LED and BGaN-LED.

QW thickness (nm) 7 10 15 20
GaN-LED Peak energy (eV) 3.43 3.43 3.44 3.45
λ (nm) 361.5 361.5 360.5 359.4
Spontaneous emission (1028 s−1 cm−3 eV−1) 1.15 1.53 2.36 3.34
BGaN-LED Peak energy (eV) 3.43 3.36 3.36 3.36
λ (nm) 361.5 369 369 369
Spontaneous emission (1028 s−1 cm−3 eV−1) 2.04 3.43 2.53 2.08
Ratio of spontaneous emissions 1.77 2.24 1.07 0.62
Difference between spontaneous emissions (1028 s−1 cm−3 eV−1) 0.89 1.9 0.17 −1.26
DownLoad: CSV

Table 2.   Summarized values of power spectral density for GaN-LED and BGaN-LED.

QW thickness (nm) 7 10 15 20
GaN-LED Peak energy (eV) 3.46 3.45 3.45 3.45
λ (nm) 358.4 359.4 359.4 359.4
Power spectral density (W cm−1 eV−1) 1.61 1.81 1.84 1.93
BGaN-LED Peak energy (eV) 3.35 3.31 3.31 3.31
λ (nm) 370.1 374.6 374.6 374.6
Power spectral density (W cm−1 eV−1) 2.4 5.6 6.1 6.7
Ratio of power spectral densities 1.49 3.09 3.31 3.47
Difference between power spectral densities (W cm−1 eV−1) 0.79 3.79 4.26 4.77
DownLoad: CSV

Table 3.   Summarized values of flux spectral density for GaN-LED and BGaN-LED.

QW thickness (nm) 7 10 15 20
GaN-LED Peak energy (eV) 3.47 3.46 3.45 3.45
λ (nm) 357.3 358.4 359.4 359.4
Flux spectral density (1018 s−1 cm−1 eV−1) 2.91 3.25 3.32 3.5
BGaN-LED Peak energy (eV) 3.35 3.31 3.31 3.31
λ (nm) 370.1 374.6 374.6 374.6
Flux spectral density (1018 s−1 cm−1 eV−1) 4.48 10.3 11.3 12.5
Ratio of flux spectral densities (s−1 cm−1 eV−1) 1.54 3.17 3.40 3.57
Difference between flux spectral densities (1018 s−1 cm−1 eV−1) 1.57 7.05 7.98 9
DownLoad: CSV
[1]
Hamdoune A. Elaboration du nitrure de gallium, étude de ses propriétés et applications. Thesis of Doctorate, University of Abou-Bakr Belkaid, Tlemcen, Algeria, 2006
[2]
Nakamura S. III-V nitride based light-emitting devices. Solid State Communications, 1997. 102: 237 doi: 10.1016/S0038-1098(96)00722-3
[3]
Masui H, Nakamura S, DenBaars S P, et al. Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges. IEEE Trans Electron Devices, 2010, 57: 88 doi: 10.1109/TED.2009.2033773
[4]
Hu H P, Zhou S J, Liu X T, et al. Effects of GaN/AlGaN/sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes. J Scientific Reports, 2017, 7, 44627 doi: 10.1038/srep44627
[5]
Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. J Semicond Sci Technol 2011, 26 , 014036 doi: 10.1088/0268-1242/26/1/014036
[6]
Kneissl M, Rass J. III nitride ultraviolet emitters. Springer Series in Materials Science 2016, 227, 1
[7]
Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides. J Nat Photonics 2008, 2, 77 doi: 10.1038/nphoton.2007.293
[8]
Nakamura S, Krames M R. History of gallium-nitride-based light-emitting diodes for illumination. Proc IEEE, 2013, 101(10), 2211 doi: 10.1109/JPROC.2013.2274929
[9]
Verzellesi G , Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: physic mechanisms remedies. J Appl Phys 2013, 114(7), 071101. doi: 10.1063/1.4816434
[10]
Yang W, Wang W, Lin Y, et al. Deposition of nonpolar mplane InGaN/GaN multiple quantum wells on LiGaO+(100) substrates. J Mater Chem C 2014, 2(5), 801 doi: 10.1039/C3TC31935K
[11]
Schubert M F, Xu J, Kim J K, et al. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett. 2008, 93(4), 041102. doi: 10.1063/1.2963029
[12]
Lin Z T, Wang H Y, Wang W L, et al. Employing low-temperature barriers to achieve strain-relaxed and high-performance GaN-based LEDs. J Opt Express, 2016, 24, 11886. doi: 10.1364/OE.24.011885
[13]
Hirayama H, Fujikawa S, Noguchi N, et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. J Phys Status Solidi A, 2009, 206, 1176 doi: 10.1002/pssa.v206:6
[14]
Takano T, Fujikawa S, Kondo Y, et al. Remarkable improvement in output power for an InAlGaN based ultraviolet LED by improving the crystalline quality of AlN/AlGaN templates. J Phys Status Solidi C, 2008, 5, 2102 doi: 10.1002/(ISSN)1610-1642
[15]
Lin Z T, Wang H T, Lin Y H, et al. Stress management on underlying GaN-based epitaxial films: A new vision for achieving high-performance LEDs on Si substrates. J Appl Phys, 2017, 122, 204503. doi: 10.1063/1.4993985
[16]
Meel K, Mahala P, Singh S. Design and fabrication of multi quantum well based GaN/InGaN blue LED. IOP Conf Ser: Mater Sci Eng, 2018, 331, 012008 doi: 10.1088/1757-899X/331/1/012008
[17]
Gautier S, Patriarche G, Moudakir T. Deep structural analysis of novel BGaN material layers grown by MOVPE. J Cryst Growth 2011, 315, 288 doi: 10.1016/j.jcrysgro.2010.08.042
[18]
Pease R S. An X-ray study of boron nitride. Acta Crystallogr. 1952, 5, 356. doi: 10.1107/S0365110X52001064
[19]
Herold A, Marzluf B, Perio P, et al. Inorganic reactions and methods. Formation of Ceramics Seances Acad Sci 1958, 246, 1866
[20]
Thomas J, Weston N E, O’connor T, et al. Boron nitride, thermal transformation to ordered-layer-lattice boron nitride. J Am Chem Soc 1962, 84, 4619. doi: 10.1021/ja00883a001
[21]
Wentorf R Jr. Cubic form of boron nitride. J Chem Phys, 1957, 26, 956. doi: 10.1063/1.1745964
[22]
Wentorf R Jr. Synthesis of the cubic form of boron nitride. J Chem Phys. 1961, 34, 809. doi: 10.1063/1.1731679
[23]
Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. J Adv Electron Mater. 2018, 4, 1600501 doi: 10.1002/aelm.201600501
[24]
Zhang X. Thin solid films electronic and photonic applications, 2013, 544, 2. doi: 10.1016/j.tsf.2013.07.001
[25]
Dreyer C E, Lyons J L, Janotti A, et al. Band alignments and polarization properties of BN polymorphs. Appl Phys Express, 2014, 7, 031001. doi: 10.7567/APEX.7.031001
[26]
Gunning B P, Moseley M W, Koleske D D, et al. Phase degradation in BxGa1-xN films grown at low temperature by metalorganic vapor phase epitaxy. J Cryst Growth, 2017, 464, 190. doi: 10.1016/j.jcrysgro.2016.10.054
[27]
Ougazzaden A, Gautier S, Moudakir T. Band gap bowing in BGaN thin films. Appl Phys Lett, 2008, 93, 083118 doi: 10.1063/1.2977588
[28]
Atlas User’s Manual; Silvaco International Inc. Santa Clara, CA, USA. Version: 2012
[29]
Lachebi A, Abid H, DrizMand Al-Douri Y. First-principles study of cubic BxGa1–xN alloys. Int J Nanoelectron, 2008, 1, 81 doi: 10.3906/.z-0902-3
[30]
Schubert E F. Light-emitting diodes. 2nd ed. Cambridge University Press, 2006, 432
[31]
Ambacher O, Dimitrov R, Stutzmann M, et al. Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices. J Phys Stat Sol, 1999, 216, 381 doi: 10.1002/(ISSN)1521-3951
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4174 Times PDF downloads: 147 Times Cited by: 0 Times

    History

    Received: 04 May 2018 Revised: 08 June 2018 Online: Accepted Manuscript: 11 January 2019Uncorrected proof: 11 January 2019Published: 01 March 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Asma Belaid, Abdelkader Hamdoune. Numerical simulation of UV LEDs with GaN and BGaN single quantum well[J]. Journal of Semiconductors, 2019, 40(3): 032802. doi: 10.1088/1674-4926/40/3/032802 ****A Belaid, A Hamdoune, Numerical simulation of UV LEDs with GaN and BGaN single quantum well[J]. J. Semicond., 2019, 40(3): 032802. doi: 10.1088/1674-4926/40/3/032802.
      Citation:
      Asma Belaid, Abdelkader Hamdoune. Numerical simulation of UV LEDs with GaN and BGaN single quantum well[J]. Journal of Semiconductors, 2019, 40(3): 032802. doi: 10.1088/1674-4926/40/3/032802 ****
      A Belaid, A Hamdoune, Numerical simulation of UV LEDs with GaN and BGaN single quantum well[J]. J. Semicond., 2019, 40(3): 032802. doi: 10.1088/1674-4926/40/3/032802.

      Numerical simulation of UV LEDs with GaN and BGaN single quantum well

      DOI: 10.1088/1674-4926/40/3/032802
      More Information
      • Corresponding author: Email: belaidaasma@gmail.com
      • Received Date: 2018-05-04
      • Revised Date: 2018-06-08
      • Published Date: 2019-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return