Citation: |
Ziqi Zhou, Yu Cui, Ping-Heng Tan, Xuelu Liu, Zhongming Wei. Optical and electrical properties of two-dimensional anisotropic materials[J]. Journal of Semiconductors, 2019, 40(6): 061001. doi: 10.1088/1674-4926/40/6/061001
****
Z Q Zhou, Y Cui, P H Tan, X L Liu, Z M Wei, Optical and electrical properties of two-dimensional anisotropic materials[J]. J. Semicond., 2019, 40(6): 061001. doi: 10.1088/1674-4926/40/6/061001.
|
Optical and electrical properties of two-dimensional anisotropic materials
DOI: 10.1088/1674-4926/40/6/061001
More Information
-
Abstract
Two-dimensional (2D) anisotropic materials, such as B-P, B-As, GeSe, GeAs, ReSe2, KP15 and their hybrid systems, exhibit unique crystal structures and extraordinary anisotropy. This review presents a comprehensive comparison of various 2D anisotropic crystals as well as relevant FETs and photodetectors, especially on their particular anisotropy in optical and electrical properties. First, the structure of typical 2D anisotropic crystal as well as the analysis of structural anisotropy is provided. Then, recent researches on anisotropic Raman spectra are reviewed. Particularly, a brief measurement principle of Raman spectra under three typical polarized measurement configurations is introduced. Finally, recent progress on the electrical and photoelectrical properties of FETs and polarization-sensitive photodetectors based on 2D anisotropic materials is summarized for the comparison between different 2D anisotropic materials. Beyond the high response speed, sensitivity and on/off ratio, these 2D anisotropic crystals exhibit highly conduction ratio and dichroic ratio which can be applied in terms of polarization sensors, polarization spectroscopy imaging, optical radar and remote sensing. -
References
[1] Shang J, Huang L, Wei Z. Effects of vertical electric field and compressive strain on electronic properties of bilayer ZrS2. J Semicond, 2017, 38(3), 033001 doi: 10.1088/1674-4926/38/3/033001[2] Fan C, Li Y, Lu F, et al. Wavelength dependent UV–vis photodetectors from SnS2 flakes. RSC Adv, 2016, 6(1), 422 doi: 10.1039/C5RA24905H[3] Wei Z, Li B, Xia C, et al. Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods, 2018, 2(11), 1800094 doi: 10.1002/smtd.v2.11[4] Wang X, Cui Y, Li T, et al. Recent advances in the functional 2D photonic and optoelectronic devices. Adv Opt Mater, 2018, 1801274 doi: 10.1002/adom.201801274[5] Wang Y, Huang L H, Li B, et al. Composition-tunable 2D SnSe2(1− x)S2 x alloys towards efficient bandgap engineering and high performance (opto)electronics. J Mater Chem C, 2017, 5(1), 84 doi: 10.1039/C6TC03751H[6] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nat Photon, 2010, 4, 297 doi: 10.1038/nphoton.2010.40[7] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438, 197 doi: 10.1038/nature04233[8] Huang L, Tao L, Gong K, et al. Role of defects in enhanced Fermi level pinning at interfaces between metals and transition metal dichalcogenides. Phys Rev B, 2017, 96, 205303 doi: 10.1103/PhysRevB.96.205303[9] Podzorov V, Gershenson M, Zeis C, et al. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl Phys Lett, 2004, 84, 3301-3303 doi: 10.1063/1.1723695[10] Xia C, Li J. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J Semicond, 2016, 37(5), 051001 doi: 10.1088/1674-4926/37/5/051001[11] Huo N, Yang Y, Li J. Optoelectronics based on 2D TMDs and heterostructures. J Semicond, 2017, 38(3), 031002 doi: 10.1088/1674-4926/38/3/031002[12] Tan Q H, Zhang X, Luo X D, et al. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings. J Semicond, 2017, 38(3), 031006 doi: 10.1088/1674-4926/38/3/031006[13] Lou Z, Liang Z, Shen G. Photodetectors based on two dimensional materials. J Semicond, 2016, 37(9), 091001 doi: 10.1088/1674-4926/37/9/091001[14] Amani M, Regan E, Bullock J, et al. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano, 2017, 11(11), 11724 doi: 10.1021/acsnano.7b07028[15] Amani M, Tan C, Zhang G, et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano, 2018, 12(7), 7253 doi: 10.1021/acsnano.8b03424[16] Chu F, Chen M, Wang Y, et al. A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy. J Mater Chem C, 2018, 6(10), 2509 doi: 10.1039/C7TC05488B[17] Hong T, Chamlagain B, Lin W, et al. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale, 2014, 6, 8978 doi: 10.1039/C4NR02164A[18] Huo N, Yang S, Wei Z, et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS(2) nanoflakes. Sci Rep, 2014, 4, 5209 doi: 10.1038/srep05209[19] Lai J, Liu X, Ma J, et al. Anisotropic broadband photoresponse of layered type-II Weyl semimetal MoTe2. Adv Mater, 2018, 30(22), e1707152 doi: 10.1002/adma.v30.22[20] Li Y, Wang Y, Huang L, et al. Anti-ambipolar field-effect transistors based on few-layer 2D transition metal dichalcogenides. ACS Appl Mater Interfaces, 2016, 8(24), 15574 doi: 10.1021/acsami.6b02513[21] Wang Y, Huang L, Wei Z. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J Semicond, 2017, 38(3), 034001 doi: 10.1088/1674-4926/38/3/034001[22] Cao T, Li Z, Qiu D Y, et al. Gate switchable transport and optical anisotropy in 90 degrees twisted bilayer black phosphorus. Nano Lett, 2016, 16(9), 5542 doi: 10.1021/acs.nanolett.6b02084[23] Liu B, Kopf M, Abbas A N, et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv Mater, 2015, 27, 4423 doi: 10.1002/adma.v27.30[24] Zhong M, Wang X, Liu S, et al. High-performance photodetectors based on Sb2S3 nanowires: wavelength dependence and wide temperature range utilization. Nanoscale, 2017, 9, 12364 doi: 10.1039/C7NR03574H[25] Ye L, Wang P, Luo W, et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy, 2017, 37, 53 doi: 10.1016/j.nanoen.2017.05.004[26] Zhong M, Zhou K, Wei Z, et al. Highly anisotropic solar-blind UV photodetector based on large-size two-dimensional α-MoO3 atomic crystals. 2D Mater, 2018, 5, 035033 doi: 10.1088/2053-1583/aac65e[27] Li J B, Wang X R. Preface to the special topic on 2D materials and devices. J Semicond, 2017, 38(3), 031001 doi: 10.1088/1674-4926/38/3/031001[28] Hu Z, Li Q, Lei B, et al. Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv Mater, 2018, 1801931 doi: 10.1002/adma.201801931[29] Lin T, Cong X, Lin M L, et al. The phonon confinement effect in two-dimensional nanocrystals of black phosphorus with anisotropic phonon dispersions. Nanoscale, 2018, 10(18), 8704 doi: 10.1039/C8NR01531G[30] Barreteau C, Michon B, Besnard C, et al. High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors. J Cryst Growth, 2016, 443, 75 doi: 10.1016/j.jcrysgro.2016.03.019[31] Li L, Wang W, Gong P, et al. 2D GeP: An unexploited low-symmetry semiconductor with strong In-plane anisotropy. Adv Mater, 2018, 30(14), e1706771 doi: 10.1002/adma.v30.14[32] Mortazavi B, Rabczuk T. Anisotropic mechanical properties and strain tuneable band-gap in single-layer SiP, SiAs, GeP and GeAs. Physica E, 2018, 103, 273 doi: 10.1016/j.physe.2018.06.011[33] Li C, Wang S, Li C, et al. Highly sensitive detection of polarized light using a new group IV–V 2D orthorhombic SiP. J Mater Chem C, 2018, 6(27), 7219 doi: 10.1039/C8TC02037J[34] Wang X, Jones A, Seyler K, et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat Nanotechnol, 2015, 10, 517 doi: 10.1038/nnano.2015.71[35] Chen Y, Chen C, Kealhofer R, et al. Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Adv Mater, 2018, 30, 1800754 doi: 10.1002/adma.v30.30[36] Zhong M, Xia Q, Pan L, et al. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: black arsenic. Adv Funct.Mater, 2018, 28, 1802581 doi: 10.1002/adfm.201802581[37] Silva-Guillén J A, Canadell E, Ordejón P, et al. Anisotropic features in the electronic structure of the two-dimensional transition metal trichalcogenide TiS3: electron doping and plasmons. 2D Mater, 2017, 4(2), 025085 doi: 10.1088/2053-1583/aa6b92[38] Yuan H, Liu X, Afshinmanesh F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat Nanotechnol, 2015, 10, 707 doi: 10.1038/nnano.2015.112[39] Long M, Gao A, Wang P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv, 2017, 3, e1700589 doi: 10.1126/sciadv.1700589[40] Zhou Z, Long M, Pan L, et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano, 2018 doi: 10.1021/acsnano.8b06629[41] Wang X, Li Y, Huang L, et al. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J Am Chem Soc, 2017, 139, 14976 doi: 10.1021/jacs.7b06314[42] Lin Y C, Komsa H P, Yeh C H, et al. Single-layer ReS(2): two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano, 2015, 9(11), 11249 doi: 10.1021/acsnano.5b04851[43] Zhang E, Jin Y, Yuan X, et al. ReS2-based field-effect transistors and photodetectors. Adv Funt Mater, 2015, 25, 4076 doi: 10.1002/adfm.v25.26[44] Zhang E, Wang P, Li Z, et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano, 2016, 10, 8067 doi: 10.1021/acsnano.6b04165[45] Tian N, Yang Y, Liu D, et al. High anisotropy in tubular layered exfoliated KP15. ACS Nano, 2018, 12(2), 1712 doi: 10.1021/acsnano.7b08368[46] Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5), 372 doi: 10.1038/nnano.2014.35[47] Guo J, Liu Y, Ma Y, et al. Few-layer GeAs field-effect transistors and infrared photodetectors. Adv Mater, 2018, 30, 1705934 doi: 10.1002/adma.201705934[48] Niu Y, Frisenda R, Flores E, et al. Polarization-sensitive and broadband photodetection based on a mixed-dimensionality TiS3/Si p–n junction. Adv Optical Mater, 2018, 6(19), 1800351 doi: 10.1002/adom.v6.19[49] Wen W, Zhu Y, Liu X, et al. Anisotropic spectroscopy and electrical properties of 2D ReS2(1– x)Se2 x. alloys with distorted 1T structure. Small, 2017, 13(12), 1603788 doi: 10.1002/smll.201603788[50] Rau J W, Kannewurf C R. Optical absorption, reflectivity, and electrical conductivity in GeAs and GeAs2. Phys Rev B, 1971, 3, 2581 doi: 10.1103/PhysRevB.3.2581[51] Wang P, Liu S, Luo W, et al. Arrayed Van Der Waals broadband detectors for dual-band detection. Adv Mater, 2017, 29(16) doi: 10.1002/adma.201604439[52] Liu S, Xiao W, Zhong M, et al. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology, 2018, 29(18), 184002 doi: 10.1088/1361-6528/aaafa2[53] Rahman M, Davey K, Qiao S Z. Advent of 2D rhenium disulfide (ReS2): fundamentals to applications. Adv Funct Mater, 2017, 27(10), 1606129 doi: 10.1002/adfm.v27.10[54] Kang B, Kim Y, Cho JH, et al. Ambipolar transport based on CVD-synthesized ReSe2. 2D Mater, 2017, 4(2), 025014 doi: 10.1088/2053-1583/aa591f[55] Zhang X, Tan Q H, Wu J B, et al. Review on the Raman spectroscopy of different types of layered materials. Nanoscale, 2016, 8(12), 6435 doi: 10.1039/C5NR07205K[56] Yang G, Zhang W. Renaissance of pyridine-oxazolines as chiral ligands for asymmetric catalysis. Chem Soc Rev, 2018, 47(5), 1783 doi: 10.1039/C7CS00615B[57] Wu J B, Zhao H, Li Y, et al. Monolayer molybdenum disulfide nanoribbons with high optical anisotropy. Adv Opt Mater, 2016, 4(5), 756 doi: 10.1002/adom.v4.5[58] Wu J B, Lin M L, Cong X, et al. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev, 2018, 47(5), 1822 doi: 10.1039/C6CS00915H[59] Liang L, Zhang J, Sumpter B G, et al. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano, 2017, 11(12), 11777 doi: 10.1021/acsnano.7b06551[60] Zhao H, Wu J, Zhong H, et al. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res, 2015, 8(11), 3651 doi: 10.1007/s12274-015-0865-0[61] Ribeiro H B, Pimenta M A, de Matos C J S. Raman spectroscopy in black phosphorus. J Raman Spectrosc, 2018, 49(1), 76 doi: 10.1002/jrs.v49.1[62] Liu X L, Zhang X, Lin M L, et al. Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials. Chin Phys B, 2017, 26(6), 067802 doi: 10.1088/1674-1056/26/6/067802[63] Lee K, Kamali S, Ericsson T, et al. GeAs: Highly anisotropic van der Waals thermoelectric material. Chem Mater, 2016, 28(8), 2776 doi: 10.1021/acs.chemmater.6b00567[64] Zhou L, Guo Y, Zhao J. GeAs and SiAs monolayers: novel 2D semiconductors with suitable band structures. Phys E, 2018, 95, 149 doi: 10.1016/j.physe.2017.08.016[65] Song Q, Wang H, Pan X, et al. Anomalous in-plane anisotropic Raman response of monoclinic semimetal 1 T -MoTe2. Sci Rep, 2017, 7(1), 1758 doi: 10.1038/s41598-017-01874-2[66] Song Q, Wang H, Xu X, et al. The polarization-dependent anisotropic Raman response of few-layer and bulk WTe2 under different excitation wavelengths. RSC Adv, 2016, 6(105), 103830 doi: 10.1039/C6RA23687A[67] Xu X, Song Q, Wang H, et al. In-plane anisotropies of polarized raman response and electrical conductivity in layered tin selenide. ACS Appl Mater Interfaces, 2017, 9(14), 12601 doi: 10.1021/acsami.7b00782[68] Liu X, Ryder C R, Wells S A, et al. Resolving the in-plane anisotropic properties of black phosphorus. Small Methods, 2017, 1, 1700143 doi: 10.1002/smtd.201700143[69] Venuthurumilli P, Ye P, Xu X. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano, 2018, 12, 4861 doi: 10.1021/acsnano.8b01660[70] Niu C, Buhl P M, Bihlmayer G, et al. Two-dimensional topological crystalline insulator and topological phase transition in TlSe and TlS monolayers. Nano Lett, 2015, 15(9), 6071 doi: 10.1021/acs.nanolett.5b02299[71] Lai J, Liu Y, Ma J, et al. Broadband anisotropic photoresponse of the "hydrogen atom" version type-II Weyl semimetal candidate TaIrTe4. ACS Nano, 2018, 12(4), 4055 doi: 10.1021/acsnano.8b01897[72] Jiang J, Liu Z K, Sun Y, et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat Commun, 2017, 8, 13973 doi: 10.1038/ncomms13973[73] Zhou W, Chen J, Gao H, et al. Anomalous and polarization-sensitive photoresponse of Td–WTe2 from visible to infrared light. Adv Mater, 2019, 31(5), e1804629 doi: 10.1002/adma.201804629[74] Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 2014, 5, 4458 doi: 10.1038/ncomms5458[75] Cui F, Feng Q, Hong J, et al. Synthesis of large-size 1T' ReS2 xSe2(1– x) alloy monolayer with tunable bandgap and carrier type. Adv Mater, 2017, 29(46), 1705015 doi: 10.1002/adma.201705015[76] Meng X, Zhou Y, Chen K, et al. Anisotropic saturable and excited-state absorption in bulk ReS2. Adv Opt Mater, 2018, 6(14), 1800137 doi: 10.1002/adom.201800137[77] Zheng H, Zhu M, Zhang J, et al. A first-principles study on the magnetic properties of Sc, V, Cr and Mn-doped monolayer TiS3. RSC Adv, 2016, 6(60), 55194 doi: 10.1039/C6RA06486H[78] Li L, Gong P, Wang W, et al. Strong in-plane anisotropies of optical and electrical response in layered dimetal chalcogenide. ACS Nano, 2017, 11(10), 10264 doi: 10.1021/acsnano.7b04860 -
Proportional views