Citation: |
Hua Pang, Jiahuan Yan, Jie Yang, Shiqi Liu, Yuanyuan Pan, Xiuying Zhang, Bowen Shi, Hao Tang, Jinbo Yang, Qihang Liu, Lianqiang Xu, Yangyang Wang, Jing Lv. Bilayer tellurene–metal interfaces[J]. Journal of Semiconductors, 2019, 40(6): 062003. doi: 10.1088/1674-4926/40/6/062003
****
H Pang, J H Yan, J Yang, S Q Liu, Y Y Pan, X Y Zhang, B W Shi, H Tang, J B Yang, Q H Liu, L Q Xu, Y Y Wang, J Lv, Bilayer tellurene–metal interfaces[J]. J. Semicond., 2019, 40(6): 062003. doi: 10.1088/1674-4926/40/6/062003.
|
-
Abstract
Tellurene, an emerging two-dimensional chain-like semiconductor, stands out for its high switch ratio, carrier mobility and excellent stability in air. Directly contacting the 2D semiconductor materials with metal electrodes is a feasible doping means to inject carriers. However, Schottky barrier often arises at the metal–semiconductors interface, impeding the transport of carriers. Herein, we investigate the interfacial properties of BL tellurene by contacting with various metals including graphene by using ab initio calculations and quantum transport simulations. Vertical Schottky barriers take place in Ag, Al, Au and Cu electrodes according to the maintenance of the noncontact tellurene layer band structure. Besides, a p-type vertical Schottky contact is formed due to the van der Waals interaction for graphene electrode. As for the lateral direction, p-type Schottky contacts take shape for bulk metal electrodes (hole Schottky barrier heights (SBHs) ranging from 0.19 to 0.35 eV). Strong Fermi level pinning takes place with a pinning factor of 0.02. Notably, a desirable p-type quasi-Ohmic contact is developed for graphene electrode with a hole SBH of 0.08 eV. Our work sheds light on the interfacial properties of BL tellurene based transistors and could guide the experimental selections on electrodes. -
References
[1] Waldrop M M. The chips are down for Moore's law. Nature, 2016, 530(7589), 144 doi: 10.1038/530144a[2] Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354(6308), 99 doi: 10.1126/science.aah4698[3] Quhe R, Li Q, Zhang Q, et al. Simulations of quantum transport in sub-5-nm monolayer phosphorene transistors. Phys Rev Appl, 2018, 10(2), 024022 doi: 10.1103/PhysRevApplied.10.024022[4] Wang Y, Fei R, Quhe R, et al. Many-body effect and device performance limit of monolayer InSe. Acs Appl Mater Inter, 2018, 10(27), 23344 doi: 10.1021/acsami.8b06427[5] Wang Y, Huang P, Ye M, et al. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem Mater, 2017, 29(5), 2191 doi: 10.1021/acs.chemmater.6b04909[6] Ni Z, Ye M, Ma J, et al. Performance upper limit of sub-10 nm monolayer MoS2 transistors. Adv Electron Mater, 2016, 2(9), 1600191 doi: 10.1002/aelm.201600191[7] Pan Y, Wang Y, Wang L, et al. Graphdiyne-metal contacts and graphdiyne transistors. Nanoscale, 2015, 7(5), 2116 doi: 10.1039/C4NR06541G[8] Li H, Tie J, Li J, et al. High-performance sub-10-nm monolayer black phosphorene tunneling transistors. Nano Res, 2018, 11(5), 2658 doi: 10.1007/s12274-017-1895-6[9] Quhe R, Liu J, Wu J, et al. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale, 2019, 11, 532 doi: 10.1039/C8NR08852G[10] Kang J, Liu W, Sarkar D, et al. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev X, 2014, 4(3), 031005 doi: 10.1103/PhysRevX.4.031005[11] Schwierz F, Pezoldt J, Granzner R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015, 7(18), 8261 doi: 10.1039/C5NR01052G[12] Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1(9), 16042 doi: 10.1038/natrevmats.2016.42[13] Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9(12), 1063 doi: 10.1038/nnano.2014.283[14] Bandurin D A, Tyurnina A V, Yu G L, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol, 2017, 12(3), 223 doi: 10.1038/nnano.2016.242[15] Zhao Y, Qiao J, Yu Z, et al. high-electron- mobility and air-stable 2D layered PtSe2 FETs. Adv Mater, 2017, 29(5), 1604230 doi: 10.1002/adma.201604230[16] Wu J, Yuan H, Meng M, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotechnol, 2017, 12(6), 530 doi: 10.1038/nnano.2017.43[17] Huang X, Guan J, Lin Z, et al. Epitaxial growth and band structure of Te film on graphene. Nano Lett, 2017, 17(8), 4619 doi: 10.1021/acs.nanolett.7b01029[18] Chen J, Dai Y, Ma Y, et al. Ultrathin beta-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale, 2017, 9(41), 15945 doi: 10.1039/C7NR04085G[19] Wang Y, Qiu G, Wang R, et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron, 2018, 1(4), 228 doi: 10.1038/s41928-018-0058-4[20] Zhu Z, Cai X, Yi S, et al. Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experimental study. Phys Rev Lett, 2017, 119(10), 106101 doi: 10.1103/PhysRevLett.119.106101[21] Coker A, Lee T, Das T P. Investigation of the electronic properties of tellurium—energy-band structure. Phys Rev B, 1980, 22(6), 2968 doi: 10.1103/PhysRevB.22.2968[22] Anzin V B, Eremets M I, Kosichkin Y V, et al. Measurement of energy-gap in tellurium under pressure. Phys Status Solidi A, 1977, 42(1), 385 doi: 10.1002/(ISSN)1521-396X[23] Qiao J, Pan Y, Yang F, et al. Few-layer Tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci Bull, 2018, 63(3), 159 doi: 10.1016/j.scib.2018.01.010[24] Bao W, Cai X, Kim D, et al. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl Phy Lett, 2013, 102(4), 042104 doi: 10.1063/1.4789365[25] Jariwala D, Sangwan V K, Late D J, et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl Phys Lett, 2013, 102(17), 699 doi: 10.1063/1.4803920[26] Kim S, Konar A, Hwang W S, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun, 2012, 3 doi: 10.1038/ncomms2018[27] Larentis S, Fallahazad B, Tutuc E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl Phys Lett, 2012, 101(22), 193 doi: 0.1063/1.4768218[28] Pradhan N R, Rhodes D, Xin Y, et al. Ambipolar molybdenum diselenide field-effect transistors: field-effect and Hall mobilities. Acs Nano, 2014, 8(8), 7923 doi: 10.1021/nn501693d[29] Chamlagain B, Li Q, Ghimire N J, et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on Parylene-C substrate. Acs Nano, 2014, 8(5), 5079 doi: 10.1021/nn501150r[30] Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5), 372 doi: 10.1038/nnano.2014.35[31] Qiao J, Kong X, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5(1), 4475 doi: 10.1038/ncomms5475[32] Allain A, Kang J, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14(12), 1195 doi: 10.1038/nmat4452[33] Liu H, Du Y, Deng Y, et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem Soc Rev, 2015, 44(9), 2732 doi: 10.1039/C4CS00257A[34] Tung R T. The physics and chemistry of the Schottky barrier height. Appl Phys Rev, 2014, 1(1), 251 doi: 10.1063/1.4858400[35] Liu S, Li J, Shi B, et al. Gate-tunable interfacial properties of in-plane ML MX2 1T '-2H heterojunctions. J Mater Chem C, 2018, 6(27), 7400 doi: 10.1039/C8TC90116C[36] Yang J, Quhe R, Feng S, et al. Interfacial properties of borophene contacts with two-dimensional semiconductors. Phys Chem Chem Phys, 2017, 19(35), 23982 doi: 10.1039/C7CP04570K[37] Yan J, Zhang X, Pan Y, et al. Monolayer tellurene-metal contacts. J Mater Chem C, 2018, 6(23), 6153 doi: 10.1039/C8TC01421C[38] Pan Y, Li S, Ye M, et al. Interfacial properties of monolayer MoSe2–metal contacts. J Phys Chem C, 2016, 120(24), 13063 doi: 10.1021/acs.jpcc.6b02696[39] Pan Y, Li S, Ye M, et al. Interfacial properties of monolayer MoSe2-metal contacts. J Phys Chem C, 2016, 120(24), 13063 doi: 10.1021/acs.jpcc.6b02696[40] Kresse G, Hafner J. Abintio molecular-dynamics for liquid-metals. Phys Rev B, 1993, 47(1), 558 doi: 10.1103/PhysRevB.47.558[41] Kresse G, Hafner J. Ab-intio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition on germanium. Phys Rev B, 1994, 49(20), 14251 doi: 10.1103/PhysRevB.49.14251[42] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci, 1996, 6(1), 15 doi: 10.1016/0927-0256(96)00008-0[43] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54(16), 11169 doi: 10.1103/PhysRevB.54.11169[44] Monkhorst H J, Pack J D. Special points for Billouin-Zone integrations. Phys Rev B, 1976, 13(12), 5188 doi: 10.1103/PhysRevB.13.5188[45] Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 2010, 132(15), 154104 doi: 10.1063/1.3382344[46] Atomistix ToolKit version 2017, QuantumWise A/S, Copenhagen, Denmark. (www.quantumwise.com).[47] Brandbyge M, Mozos J L, Ordejon P, et al. Density-functional method for nonequilibrium electron transport. Phys Rev B, 2002, 65(16), 165401 doi: 10.1103/PhysRevB.65.165401[48] Smith D R, Schultz S, Markos P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B, 2002, 65(19), 195104 doi: 10.1103/PhysRevB.65.195104[49] Cheng A H D, Cheng D T. Heritage and early history of the boundary element method. Eng Anal Bound Elem, 2005, 29(3), 268 doi: 10.1016/j.enganabound.2004.12.001[50] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18), 3865 doi: 10.1103/PhysRevLett.77.3865[51] Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 2014, 9(2), 111 doi: 10.1038/nnano.2013.277[52] Pan Y, Wang Y, Ye M, et al. Monolayer phosphorene-metal contacts. Chem Mater, 2016, 28(7), 2100 doi: 10.1021/acs.chemmater.5b04899[53] Pan Y, Dan Y, Wang Y, et al. Schottky barriers in bilayer phosphorene transistors. Acs Appl Mater Inter, 2017, 9(14), 12694 doi: 10.1021/acsami.6b16826[54] Zhang X, Pan Y, Ye M, et al. Three-layer phosphorene-metal interfaces. Nano Res, 2018, 11(2), 707 doi: 10.1007/s12274-017-1680-6[55] Shi B, Wang Y, Li J, et al. n-type Ohmic contact and p-type Schottky contact of monolayer InSe transistors. Phys Chem Chem Phys, 2018, 20(38), 24641 doi: 10.1039/C8CP04615H[56] Zhong H, Ruge Q, Wang Y, et al. Interfacial properties of ponolayer and bilayer MoS2 contacts with metals: beyond the energy band calculations. Sci Rep, 2016, 6, 21786 doi: 10.1038/srep21786[57] Hu W, Wang T, Yang J. Tunable Schottky contacts in hybrid graphene-phosphorene nanocomposites. J Mater Chem C, 2015, 3(18), 4756 doi: 10.1039/C5TC00759C[58] Wang Y, Ye M, Weng M, et al. Electrical contacts in monolayer arsenene devices. Acs Appl Mater Inter, 2017, 9(34), 29273 doi: 10.1021/acsami.7b08513[59] Kim C, Moon I, Lee D, et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. Acs Nano, 2017, 11(2), 1588 doi: 10.1021/acsnano.6b07159[60] Liu S, Xu L, Pan Y, et al. Unusual Fermi level pinning and Ohmic contact at monolayer Bi2O2Se - metal interface. Submitted, 2018[61] Liu Y, Stradins P, Wei S H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci Adv, 2016, 2(4), e1600069 doi: 10.1126/sciadv.1600069[62] Padilha J E, Fazzio A, da Silva A J R. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. Phys Rev Lett, 2015, 114(6), 066803 doi: 10.1103/PhysRevLett.114.066803[63] Avsar A, Vera-Marun I J, Tan J Y, et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. Acs Nano, 2015, 9(4), 4138 doi: 10.1021/acsnano.5b00289 -
Supplements
19010020supp.pdf -
Proportional views