ARTICLES

Bilayer tellurene–metal interfaces

Hua Pang1, §, Jiahuan Yan1, §, Jie Yang1, Shiqi Liu1, Yuanyuan Pan1, Xiuying Zhang1, Bowen Shi1, Hao Tang1, Jinbo Yang1, 2, Qihang Liu3, Lianqiang Xu4, Yangyang Wang5, and Jing Lv1, 2, 6,

+ Author Affiliations

 Corresponding author: Yangyang Wang, wangyangyang@qxslab.cn; Jing Lv, Email: jinglu@pku.edu.cn

PDF

Turn off MathJax

Abstract: Tellurene, an emerging two-dimensional chain-like semiconductor, stands out for its high switch ratio, carrier mobility and excellent stability in air. Directly contacting the 2D semiconductor materials with metal electrodes is a feasible doping means to inject carriers. However, Schottky barrier often arises at the metal–semiconductors interface, impeding the transport of carriers. Herein, we investigate the interfacial properties of BL tellurene by contacting with various metals including graphene by using ab initio calculations and quantum transport simulations. Vertical Schottky barriers take place in Ag, Al, Au and Cu electrodes according to the maintenance of the noncontact tellurene layer band structure. Besides, a p-type vertical Schottky contact is formed due to the van der Waals interaction for graphene electrode. As for the lateral direction, p-type Schottky contacts take shape for bulk metal electrodes (hole Schottky barrier heights (SBHs) ranging from 0.19 to 0.35 eV). Strong Fermi level pinning takes place with a pinning factor of 0.02. Notably, a desirable p-type quasi-Ohmic contact is developed for graphene electrode with a hole SBH of 0.08 eV. Our work sheds light on the interfacial properties of BL tellurene based transistors and could guide the experimental selections on electrodes.

Key words: bilayer tellureneSchottky barrierquantum transport simulationfirst-principles calculation



[1]
Waldrop M M. The chips are down for Moore's law. Nature, 2016, 530(7589), 144 doi: 10.1038/530144a
[2]
Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354(6308), 99 doi: 10.1126/science.aah4698
[3]
Quhe R, Li Q, Zhang Q, et al. Simulations of quantum transport in sub-5-nm monolayer phosphorene transistors. Phys Rev Appl, 2018, 10(2), 024022 doi: 10.1103/PhysRevApplied.10.024022
[4]
Wang Y, Fei R, Quhe R, et al. Many-body effect and device performance limit of monolayer InSe. Acs Appl Mater Inter, 2018, 10(27), 23344 doi: 10.1021/acsami.8b06427
[5]
Wang Y, Huang P, Ye M, et al. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem Mater, 2017, 29(5), 2191 doi: 10.1021/acs.chemmater.6b04909
[6]
Ni Z, Ye M, Ma J, et al. Performance upper limit of sub-10 nm monolayer MoS2 transistors. Adv Electron Mater, 2016, 2(9), 1600191 doi: 10.1002/aelm.201600191
[7]
Pan Y, Wang Y, Wang L, et al. Graphdiyne-metal contacts and graphdiyne transistors. Nanoscale, 2015, 7(5), 2116 doi: 10.1039/C4NR06541G
[8]
Li H, Tie J, Li J, et al. High-performance sub-10-nm monolayer black phosphorene tunneling transistors. Nano Res, 2018, 11(5), 2658 doi: 10.1007/s12274-017-1895-6
[9]
Quhe R, Liu J, Wu J, et al. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale, 2019, 11, 532 doi: 10.1039/C8NR08852G
[10]
Kang J, Liu W, Sarkar D, et al. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev X, 2014, 4(3), 031005 doi: 10.1103/PhysRevX.4.031005
[11]
Schwierz F, Pezoldt J, Granzner R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015, 7(18), 8261 doi: 10.1039/C5NR01052G
[12]
Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1(9), 16042 doi: 10.1038/natrevmats.2016.42
[13]
Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9(12), 1063 doi: 10.1038/nnano.2014.283
[14]
Bandurin D A, Tyurnina A V, Yu G L, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol, 2017, 12(3), 223 doi: 10.1038/nnano.2016.242
[15]
Zhao Y, Qiao J, Yu Z, et al. high-electron- mobility and air-stable 2D layered PtSe2 FETs. Adv Mater, 2017, 29(5), 1604230 doi: 10.1002/adma.201604230
[16]
Wu J, Yuan H, Meng M, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotechnol, 2017, 12(6), 530 doi: 10.1038/nnano.2017.43
[17]
Huang X, Guan J, Lin Z, et al. Epitaxial growth and band structure of Te film on graphene. Nano Lett, 2017, 17(8), 4619 doi: 10.1021/acs.nanolett.7b01029
[18]
Chen J, Dai Y, Ma Y, et al. Ultrathin beta-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale, 2017, 9(41), 15945 doi: 10.1039/C7NR04085G
[19]
Wang Y, Qiu G, Wang R, et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron, 2018, 1(4), 228 doi: 10.1038/s41928-018-0058-4
[20]
Zhu Z, Cai X, Yi S, et al. Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experimental study. Phys Rev Lett, 2017, 119(10), 106101 doi: 10.1103/PhysRevLett.119.106101
[21]
Coker A, Lee T, Das T P. Investigation of the electronic properties of tellurium—energy-band structure. Phys Rev B, 1980, 22(6), 2968 doi: 10.1103/PhysRevB.22.2968
[22]
Anzin V B, Eremets M I, Kosichkin Y V, et al. Measurement of energy-gap in tellurium under pressure. Phys Status Solidi A, 1977, 42(1), 385 doi: 10.1002/(ISSN)1521-396X
[23]
Qiao J, Pan Y, Yang F, et al. Few-layer Tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci Bull, 2018, 63(3), 159 doi: 10.1016/j.scib.2018.01.010
[24]
Bao W, Cai X, Kim D, et al. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl Phy Lett, 2013, 102(4), 042104 doi: 10.1063/1.4789365
[25]
Jariwala D, Sangwan V K, Late D J, et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl Phys Lett, 2013, 102(17), 699 doi: 10.1063/1.4803920
[26]
Kim S, Konar A, Hwang W S, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun, 2012, 3 doi: 10.1038/ncomms2018
[27]
Larentis S, Fallahazad B, Tutuc E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl Phys Lett, 2012, 101(22), 193 doi: 0.1063/1.4768218
[28]
Pradhan N R, Rhodes D, Xin Y, et al. Ambipolar molybdenum diselenide field-effect transistors: field-effect and Hall mobilities. Acs Nano, 2014, 8(8), 7923 doi: 10.1021/nn501693d
[29]
Chamlagain B, Li Q, Ghimire N J, et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on Parylene-C substrate. Acs Nano, 2014, 8(5), 5079 doi: 10.1021/nn501150r
[30]
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5), 372 doi: 10.1038/nnano.2014.35
[31]
Qiao J, Kong X, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5(1), 4475 doi: 10.1038/ncomms5475
[32]
Allain A, Kang J, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14(12), 1195 doi: 10.1038/nmat4452
[33]
Liu H, Du Y, Deng Y, et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem Soc Rev, 2015, 44(9), 2732 doi: 10.1039/C4CS00257A
[34]
Tung R T. The physics and chemistry of the Schottky barrier height. Appl Phys Rev, 2014, 1(1), 251 doi: 10.1063/1.4858400
[35]
Liu S, Li J, Shi B, et al. Gate-tunable interfacial properties of in-plane ML MX2 1T '-2H heterojunctions. J Mater Chem C, 2018, 6(27), 7400 doi: 10.1039/C8TC90116C
[36]
Yang J, Quhe R, Feng S, et al. Interfacial properties of borophene contacts with two-dimensional semiconductors. Phys Chem Chem Phys, 2017, 19(35), 23982 doi: 10.1039/C7CP04570K
[37]
Yan J, Zhang X, Pan Y, et al. Monolayer tellurene-metal contacts. J Mater Chem C, 2018, 6(23), 6153 doi: 10.1039/C8TC01421C
[38]
Pan Y, Li S, Ye M, et al. Interfacial properties of monolayer MoSe2–metal contacts. J Phys Chem C, 2016, 120(24), 13063 doi: 10.1021/acs.jpcc.6b02696
[39]
Pan Y, Li S, Ye M, et al. Interfacial properties of monolayer MoSe2-metal contacts. J Phys Chem C, 2016, 120(24), 13063 doi: 10.1021/acs.jpcc.6b02696
[40]
Kresse G, Hafner J. Abintio molecular-dynamics for liquid-metals. Phys Rev B, 1993, 47(1), 558 doi: 10.1103/PhysRevB.47.558
[41]
Kresse G, Hafner J. Ab-intio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition on germanium. Phys Rev B, 1994, 49(20), 14251 doi: 10.1103/PhysRevB.49.14251
[42]
Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci, 1996, 6(1), 15 doi: 10.1016/0927-0256(96)00008-0
[43]
Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54(16), 11169 doi: 10.1103/PhysRevB.54.11169
[44]
Monkhorst H J, Pack J D. Special points for Billouin-Zone integrations. Phys Rev B, 1976, 13(12), 5188 doi: 10.1103/PhysRevB.13.5188
[45]
Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 2010, 132(15), 154104 doi: 10.1063/1.3382344
[46]
Atomistix ToolKit version 2017, QuantumWise A/S, Copenhagen, Denmark. (www.quantumwise.com).
[47]
Brandbyge M, Mozos J L, Ordejon P, et al. Density-functional method for nonequilibrium electron transport. Phys Rev B, 2002, 65(16), 165401 doi: 10.1103/PhysRevB.65.165401
[48]
Smith D R, Schultz S, Markos P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B, 2002, 65(19), 195104 doi: 10.1103/PhysRevB.65.195104
[49]
Cheng A H D, Cheng D T. Heritage and early history of the boundary element method. Eng Anal Bound Elem, 2005, 29(3), 268 doi: 10.1016/j.enganabound.2004.12.001
[50]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18), 3865 doi: 10.1103/PhysRevLett.77.3865
[51]
Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 2014, 9(2), 111 doi: 10.1038/nnano.2013.277
[52]
Pan Y, Wang Y, Ye M, et al. Monolayer phosphorene-metal contacts. Chem Mater, 2016, 28(7), 2100 doi: 10.1021/acs.chemmater.5b04899
[53]
Pan Y, Dan Y, Wang Y, et al. Schottky barriers in bilayer phosphorene transistors. Acs Appl Mater Inter, 2017, 9(14), 12694 doi: 10.1021/acsami.6b16826
[54]
Zhang X, Pan Y, Ye M, et al. Three-layer phosphorene-metal interfaces. Nano Res, 2018, 11(2), 707 doi: 10.1007/s12274-017-1680-6
[55]
Shi B, Wang Y, Li J, et al. n-type Ohmic contact and p-type Schottky contact of monolayer InSe transistors. Phys Chem Chem Phys, 2018, 20(38), 24641 doi: 10.1039/C8CP04615H
[56]
Zhong H, Ruge Q, Wang Y, et al. Interfacial properties of ponolayer and bilayer MoS2 contacts with metals: beyond the energy band calculations. Sci Rep, 2016, 6, 21786 doi: 10.1038/srep21786
[57]
Hu W, Wang T, Yang J. Tunable Schottky contacts in hybrid graphene-phosphorene nanocomposites. J Mater Chem C, 2015, 3(18), 4756 doi: 10.1039/C5TC00759C
[58]
Wang Y, Ye M, Weng M, et al. Electrical contacts in monolayer arsenene devices. Acs Appl Mater Inter, 2017, 9(34), 29273 doi: 10.1021/acsami.7b08513
[59]
Kim C, Moon I, Lee D, et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. Acs Nano, 2017, 11(2), 1588 doi: 10.1021/acsnano.6b07159
[60]
Liu S, Xu L, Pan Y, et al. Unusual Fermi level pinning and Ohmic contact at monolayer Bi2O2Se - metal interface. Submitted, 2018
[61]
Liu Y, Stradins P, Wei S H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci Adv, 2016, 2(4), e1600069 doi: 10.1126/sciadv.1600069
[62]
Padilha J E, Fazzio A, da Silva A J R. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. Phys Rev Lett, 2015, 114(6), 066803 doi: 10.1103/PhysRevLett.114.066803
[63]
Avsar A, Vera-Marun I J, Tan J Y, et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. Acs Nano, 2015, 9(4), 4138 doi: 10.1021/acsnano.5b00289
Fig. 1.  (Color online) (a) Top-view and (b) side-view of bilayer (BL) tellurene structure. Brown balls represent the contact layer while the orange ones represent the noncontact layer. (c) Schematic diagram of the interface when the BL tellurene atoms contact with metal surface. Green balls stand for the contacting metal atoms.

Fig. 2.  (Color online) Schematic diagram of the BL tellurene FET. Schottky barriers may arise at the interfaces represented by dashed lines in two directions.

Fig. 3.  (Color online) Side-views of the calculated stable BL tellurene–Ag, Al, Ni, Au, Pd, Pt, Cu and graphene contacts. Brown balls are tellurene atoms, while other colored balls are metal and graphene atoms. The diagram of average potential distribution is inset in the black box, where the Fermi level is set to zero with the red dash lines and the tunneling barrier ΔV is shown by the black arrows.

Fig. 4.  (Color online) (a) Band structure of the BL tellurene. (b)–(i) Band structure of the BL tellurene-metal systems (projected to the bilayer tellurene). The Fermi level is set at zero and represented by the dashed lines. Gray lines: the band structure of the composite system. The red lines reflect the band structure of the tellurene layer away from the metal surface (the noncontact tellurene layer), the blue ones reflect the band structure of the tellurene layer near the metal surface (the contact tellurene layer). The line width is proportional to its weight.

Fig. 5.  (Color online) (a) Part density of states (PDOS) of BL tellurene. (b)–(i) PDOS of each orbital for BL tellurene on the metal surface by the band calculations. Solid lines represent for the PDOS of the contact tellurene layer, while dash lines represent for the PDOS of the noncontact tellurene layer.

Fig. 6.  (Color online) Localized density of states (LDDOS) of the BL tellurene FET devices with metals Al, Ag, Ni, Au, Pd, Pt, Cu and graphene as electrodes (left panel) with a 5-nm channel length as well as the zero-bias transmission spectrum of the FET devices (right panel). Metal-induced gap states at the interfaces are indicated by the black dashed lines, and the Fermi level is represented by white and red dashed lines.

Fig. 7.  (Color online) (a) Comparison of the electron and hole SBHs of the BL tellurene FETs obtained by work function approximation ($\varPhi _{{\rm{L}},{\rm{W}}}^{{\rm{e}}/{\rm{h}}}$) and quantum transport simulation ${\rm{}}\left( {\varPhi _{{\rm{L}},{\rm{T}}}^{{\rm{e/h}}}} \right)$ methods in the lateral direction. (b) Lateral SBH as a function of the electrode material’s work function. The blue and pink lines indicate the fitting lines for the SBHs of the electrons for work function approximation and quantum transport simulation, respectively. The pink transparent ellipse represents for the minimal ellipse area that can overcome all the electron SBHs of the bulk metallic electrode cases for the quantum transport calculations. (c) Schematic plot of the Fermi level pinning (FLP) in the BL tellurene transistors.

Fig. 8.  (Color online) FLP factor (S ) as a function of two-dimensional channel materials’ band gap. R represents for the linear correlation coefficient, where ML black phosphorene and MoS2 are not included.

Table 1.   Calculated data of the interface with bilayer tellurene on various kinds of metals.

Metal Ag Al Ni Au Pd Pt Cu Graphene
${{\bar \varepsilon }}$ (%) 2.42 3.04 2.58 2.55 4.70 4.66 5.00 2.28
${{d}_{y}}$ (Å) 1.40 2.12 1.66 1.67 1.74 1.73 1.73 2.95
${{d}_{{\rm{Te - M}}}}$ (Å) 2.81 2.64 2.44 2.74 2.60 2.64 2.49 3.55
ΔV (eV) –13.29 –6.3 –12.08 –9.18 –13.21 –12.42 –11.21 –1.09
${{E}_{\rm{b}}}$ (eV) 0.74 0.96 1.29 0.94 1.17 1.10 0.77 0.51
${{W}_{\rm{M}}}$ (eV) 4.19 4.28 5.01 4.96 5.12 5.65 4.65 4.58
${{W}_{{\rm{Te - M}}}}$ (eV) 4.25 4.34 4.52 4.42 4.61 4.78 4.67 4.74
${\varPhi }_{{\rm{L,W}}}^{\rm e}$ 0.23 0.32 0.50 0.40 0.59 0.72 0.65
${\varPhi }_{{\rm{L,W}}}^{\rm h}$ 0.73 0.64 0.46 0.56 0.37 0.24 0.31
${\varPhi }_{{\rm{L,T}}}^{\rm e}$ 0.39 0.38 0.39 0.39 0.40 0.44 0.51 0.53
${\varPhi }_{{\rm{L,T}}}^{\rm h}$ 0.35 0.32 0.31 0.29 0.29 0.25 0.19 0.08
${{E}_{\rm{g}}}$ 0.74 0.70 0.70 0.78 0.69 0.69 0.70 0.61
${{\bar \varepsilon }}$ represents for the average mismatch ratio of the lattice parameter of metal. ${{d}_{{y}}}$ is the average distance between the contact tellurene layer and the contacted metal layer for the vertical direction. Tunneling barrier height ΔV, which is defined as the potential energy above the Fermi energy Ef at the interfaces. ${{ d}_{{\rm{Te - M}}}}$ is the minimal atom-to-atom distance between tellurene atom and metal atom. Binding energy ${{E}_{\rm{b}}}$ is the energy taken to remove per tellurene atom from the metal surface. ${{W}_{\rm{M}}}$ and ${{W}_{{\rm{Te - M}}}}$ are the calculated wave function of the free-standing metal or graphene surface and the composite system. ${\varPhi }_{{\rm{L,W}}}^{\rm e}$(${\varPhi }_{{\rm{L,W}}}^{\rm h}$) is the electron (hole) SBH acquired from the wave function approximation (WFA) method for the lateral direction, while ${\varPhi }_{{\rm{L,T}}}^{\rm e}$(${\varPhi }_{{\rm{L,T}}}^{\rm h}$) is the electron (hole) Schottky barrier height (SBH) acquired by the quantum transport simulation (QTS) method for the lateral direction. ${{E}_{\rm{g}}}$ is the transport gap of the BL tellurene FET.
DownLoad: CSV
[1]
Waldrop M M. The chips are down for Moore's law. Nature, 2016, 530(7589), 144 doi: 10.1038/530144a
[2]
Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354(6308), 99 doi: 10.1126/science.aah4698
[3]
Quhe R, Li Q, Zhang Q, et al. Simulations of quantum transport in sub-5-nm monolayer phosphorene transistors. Phys Rev Appl, 2018, 10(2), 024022 doi: 10.1103/PhysRevApplied.10.024022
[4]
Wang Y, Fei R, Quhe R, et al. Many-body effect and device performance limit of monolayer InSe. Acs Appl Mater Inter, 2018, 10(27), 23344 doi: 10.1021/acsami.8b06427
[5]
Wang Y, Huang P, Ye M, et al. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem Mater, 2017, 29(5), 2191 doi: 10.1021/acs.chemmater.6b04909
[6]
Ni Z, Ye M, Ma J, et al. Performance upper limit of sub-10 nm monolayer MoS2 transistors. Adv Electron Mater, 2016, 2(9), 1600191 doi: 10.1002/aelm.201600191
[7]
Pan Y, Wang Y, Wang L, et al. Graphdiyne-metal contacts and graphdiyne transistors. Nanoscale, 2015, 7(5), 2116 doi: 10.1039/C4NR06541G
[8]
Li H, Tie J, Li J, et al. High-performance sub-10-nm monolayer black phosphorene tunneling transistors. Nano Res, 2018, 11(5), 2658 doi: 10.1007/s12274-017-1895-6
[9]
Quhe R, Liu J, Wu J, et al. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale, 2019, 11, 532 doi: 10.1039/C8NR08852G
[10]
Kang J, Liu W, Sarkar D, et al. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev X, 2014, 4(3), 031005 doi: 10.1103/PhysRevX.4.031005
[11]
Schwierz F, Pezoldt J, Granzner R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015, 7(18), 8261 doi: 10.1039/C5NR01052G
[12]
Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1(9), 16042 doi: 10.1038/natrevmats.2016.42
[13]
Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9(12), 1063 doi: 10.1038/nnano.2014.283
[14]
Bandurin D A, Tyurnina A V, Yu G L, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol, 2017, 12(3), 223 doi: 10.1038/nnano.2016.242
[15]
Zhao Y, Qiao J, Yu Z, et al. high-electron- mobility and air-stable 2D layered PtSe2 FETs. Adv Mater, 2017, 29(5), 1604230 doi: 10.1002/adma.201604230
[16]
Wu J, Yuan H, Meng M, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotechnol, 2017, 12(6), 530 doi: 10.1038/nnano.2017.43
[17]
Huang X, Guan J, Lin Z, et al. Epitaxial growth and band structure of Te film on graphene. Nano Lett, 2017, 17(8), 4619 doi: 10.1021/acs.nanolett.7b01029
[18]
Chen J, Dai Y, Ma Y, et al. Ultrathin beta-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale, 2017, 9(41), 15945 doi: 10.1039/C7NR04085G
[19]
Wang Y, Qiu G, Wang R, et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron, 2018, 1(4), 228 doi: 10.1038/s41928-018-0058-4
[20]
Zhu Z, Cai X, Yi S, et al. Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experimental study. Phys Rev Lett, 2017, 119(10), 106101 doi: 10.1103/PhysRevLett.119.106101
[21]
Coker A, Lee T, Das T P. Investigation of the electronic properties of tellurium—energy-band structure. Phys Rev B, 1980, 22(6), 2968 doi: 10.1103/PhysRevB.22.2968
[22]
Anzin V B, Eremets M I, Kosichkin Y V, et al. Measurement of energy-gap in tellurium under pressure. Phys Status Solidi A, 1977, 42(1), 385 doi: 10.1002/(ISSN)1521-396X
[23]
Qiao J, Pan Y, Yang F, et al. Few-layer Tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci Bull, 2018, 63(3), 159 doi: 10.1016/j.scib.2018.01.010
[24]
Bao W, Cai X, Kim D, et al. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl Phy Lett, 2013, 102(4), 042104 doi: 10.1063/1.4789365
[25]
Jariwala D, Sangwan V K, Late D J, et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl Phys Lett, 2013, 102(17), 699 doi: 10.1063/1.4803920
[26]
Kim S, Konar A, Hwang W S, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun, 2012, 3 doi: 10.1038/ncomms2018
[27]
Larentis S, Fallahazad B, Tutuc E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl Phys Lett, 2012, 101(22), 193 doi: 0.1063/1.4768218
[28]
Pradhan N R, Rhodes D, Xin Y, et al. Ambipolar molybdenum diselenide field-effect transistors: field-effect and Hall mobilities. Acs Nano, 2014, 8(8), 7923 doi: 10.1021/nn501693d
[29]
Chamlagain B, Li Q, Ghimire N J, et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on Parylene-C substrate. Acs Nano, 2014, 8(5), 5079 doi: 10.1021/nn501150r
[30]
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5), 372 doi: 10.1038/nnano.2014.35
[31]
Qiao J, Kong X, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5(1), 4475 doi: 10.1038/ncomms5475
[32]
Allain A, Kang J, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14(12), 1195 doi: 10.1038/nmat4452
[33]
Liu H, Du Y, Deng Y, et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem Soc Rev, 2015, 44(9), 2732 doi: 10.1039/C4CS00257A
[34]
Tung R T. The physics and chemistry of the Schottky barrier height. Appl Phys Rev, 2014, 1(1), 251 doi: 10.1063/1.4858400
[35]
Liu S, Li J, Shi B, et al. Gate-tunable interfacial properties of in-plane ML MX2 1T '-2H heterojunctions. J Mater Chem C, 2018, 6(27), 7400 doi: 10.1039/C8TC90116C
[36]
Yang J, Quhe R, Feng S, et al. Interfacial properties of borophene contacts with two-dimensional semiconductors. Phys Chem Chem Phys, 2017, 19(35), 23982 doi: 10.1039/C7CP04570K
[37]
Yan J, Zhang X, Pan Y, et al. Monolayer tellurene-metal contacts. J Mater Chem C, 2018, 6(23), 6153 doi: 10.1039/C8TC01421C
[38]
Pan Y, Li S, Ye M, et al. Interfacial properties of monolayer MoSe2–metal contacts. J Phys Chem C, 2016, 120(24), 13063 doi: 10.1021/acs.jpcc.6b02696
[39]
Pan Y, Li S, Ye M, et al. Interfacial properties of monolayer MoSe2-metal contacts. J Phys Chem C, 2016, 120(24), 13063 doi: 10.1021/acs.jpcc.6b02696
[40]
Kresse G, Hafner J. Abintio molecular-dynamics for liquid-metals. Phys Rev B, 1993, 47(1), 558 doi: 10.1103/PhysRevB.47.558
[41]
Kresse G, Hafner J. Ab-intio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition on germanium. Phys Rev B, 1994, 49(20), 14251 doi: 10.1103/PhysRevB.49.14251
[42]
Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci, 1996, 6(1), 15 doi: 10.1016/0927-0256(96)00008-0
[43]
Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54(16), 11169 doi: 10.1103/PhysRevB.54.11169
[44]
Monkhorst H J, Pack J D. Special points for Billouin-Zone integrations. Phys Rev B, 1976, 13(12), 5188 doi: 10.1103/PhysRevB.13.5188
[45]
Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 2010, 132(15), 154104 doi: 10.1063/1.3382344
[46]
Atomistix ToolKit version 2017, QuantumWise A/S, Copenhagen, Denmark. (www.quantumwise.com).
[47]
Brandbyge M, Mozos J L, Ordejon P, et al. Density-functional method for nonequilibrium electron transport. Phys Rev B, 2002, 65(16), 165401 doi: 10.1103/PhysRevB.65.165401
[48]
Smith D R, Schultz S, Markos P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B, 2002, 65(19), 195104 doi: 10.1103/PhysRevB.65.195104
[49]
Cheng A H D, Cheng D T. Heritage and early history of the boundary element method. Eng Anal Bound Elem, 2005, 29(3), 268 doi: 10.1016/j.enganabound.2004.12.001
[50]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18), 3865 doi: 10.1103/PhysRevLett.77.3865
[51]
Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 2014, 9(2), 111 doi: 10.1038/nnano.2013.277
[52]
Pan Y, Wang Y, Ye M, et al. Monolayer phosphorene-metal contacts. Chem Mater, 2016, 28(7), 2100 doi: 10.1021/acs.chemmater.5b04899
[53]
Pan Y, Dan Y, Wang Y, et al. Schottky barriers in bilayer phosphorene transistors. Acs Appl Mater Inter, 2017, 9(14), 12694 doi: 10.1021/acsami.6b16826
[54]
Zhang X, Pan Y, Ye M, et al. Three-layer phosphorene-metal interfaces. Nano Res, 2018, 11(2), 707 doi: 10.1007/s12274-017-1680-6
[55]
Shi B, Wang Y, Li J, et al. n-type Ohmic contact and p-type Schottky contact of monolayer InSe transistors. Phys Chem Chem Phys, 2018, 20(38), 24641 doi: 10.1039/C8CP04615H
[56]
Zhong H, Ruge Q, Wang Y, et al. Interfacial properties of ponolayer and bilayer MoS2 contacts with metals: beyond the energy band calculations. Sci Rep, 2016, 6, 21786 doi: 10.1038/srep21786
[57]
Hu W, Wang T, Yang J. Tunable Schottky contacts in hybrid graphene-phosphorene nanocomposites. J Mater Chem C, 2015, 3(18), 4756 doi: 10.1039/C5TC00759C
[58]
Wang Y, Ye M, Weng M, et al. Electrical contacts in monolayer arsenene devices. Acs Appl Mater Inter, 2017, 9(34), 29273 doi: 10.1021/acsami.7b08513
[59]
Kim C, Moon I, Lee D, et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. Acs Nano, 2017, 11(2), 1588 doi: 10.1021/acsnano.6b07159
[60]
Liu S, Xu L, Pan Y, et al. Unusual Fermi level pinning and Ohmic contact at monolayer Bi2O2Se - metal interface. Submitted, 2018
[61]
Liu Y, Stradins P, Wei S H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci Adv, 2016, 2(4), e1600069 doi: 10.1126/sciadv.1600069
[62]
Padilha J E, Fazzio A, da Silva A J R. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. Phys Rev Lett, 2015, 114(6), 066803 doi: 10.1103/PhysRevLett.114.066803
[63]
Avsar A, Vera-Marun I J, Tan J Y, et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. Acs Nano, 2015, 9(4), 4138 doi: 10.1021/acsnano.5b00289

19010020supp.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5116 Times PDF downloads: 95 Times Cited by: 0 Times

    History

    Received: 17 January 2019 Revised: 22 April 2019 Online: Accepted Manuscript: 09 May 2019Uncorrected proof: 13 May 2019Published: 05 June 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hua Pang, Jiahuan Yan, Jie Yang, Shiqi Liu, Yuanyuan Pan, Xiuying Zhang, Bowen Shi, Hao Tang, Jinbo Yang, Qihang Liu, Lianqiang Xu, Yangyang Wang, Jing Lv. Bilayer tellurene–metal interfaces[J]. Journal of Semiconductors, 2019, 40(6): 062003. doi: 10.1088/1674-4926/40/6/062003 ****H Pang, J H Yan, J Yang, S Q Liu, Y Y Pan, X Y Zhang, B W Shi, H Tang, J B Yang, Q H Liu, L Q Xu, Y Y Wang, J Lv, Bilayer tellurene–metal interfaces[J]. J. Semicond., 2019, 40(6): 062003. doi: 10.1088/1674-4926/40/6/062003.
      Citation:
      Hua Pang, Jiahuan Yan, Jie Yang, Shiqi Liu, Yuanyuan Pan, Xiuying Zhang, Bowen Shi, Hao Tang, Jinbo Yang, Qihang Liu, Lianqiang Xu, Yangyang Wang, Jing Lv. Bilayer tellurene–metal interfaces[J]. Journal of Semiconductors, 2019, 40(6): 062003. doi: 10.1088/1674-4926/40/6/062003 ****
      H Pang, J H Yan, J Yang, S Q Liu, Y Y Pan, X Y Zhang, B W Shi, H Tang, J B Yang, Q H Liu, L Q Xu, Y Y Wang, J Lv, Bilayer tellurene–metal interfaces[J]. J. Semicond., 2019, 40(6): 062003. doi: 10.1088/1674-4926/40/6/062003.

      Bilayer tellurene–metal interfaces

      doi: 10.1088/1674-4926/40/6/062003
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return