Citation: |
Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials[J]. Journal of Semiconductors, 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903
****
S L Ren, Q H Tan, J Zhang, Review on the quantum emitters in two-dimensional materials[J]. J. Semicond., 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903.
|
Review on the quantum emitters in two-dimensional materials
DOI: 10.1088/1674-4926/40/7/071903
More Information
-
Abstract
The solid state single photon source is fundamental key device for application of quantum communication, quantum computing, quantum information and quantum precious metrology. After years of searching, researchers have found the single photon emitters in zero-dimensional quantum dots (QDs), one-dimensional nanowires, three-dimensional wide bandgap materials, as well as two-dimensional (2D) materials developed recently. Here we will give a brief review on the single photon emitters in 2D van der Waals materials. We will firstly introduce the quantum emitters from various 2D materials and their characteristics. Then we will introduce the electrically driven quantum light in the transition metal dichalcogenides (TMDs)-based light emitting diode (LED). In addition, we will introduce how to tailor the quantum emitters by nanopillars and strain engineering, the entanglement between chiral phonons (CPs) and single photon in monolayer TMDs. Finally, we will give a perspective on the opportunities and challenges of 2D materials-based quantum light sources. -
References
[1] Hours J, Varoutsis S, Gallart M, et al. Single photon emission from individual GaAs quantum dots. Appl Phys Lett, 2003, 82(14), 2206 doi: 10.1063/1.1563050[2] Stock E, Warming T, Ostapenko I, et al. Single-photon emission from InGaAs quantum dots grown on (111) GaAs. Appl Phys Lett, 2010, 96(9), 145 doi: 10.1063/1.3337097[3] Dalacu D, Poole P J, Williams R L. Nanowire-based sources of non-classical light. Nanotechnology, 2019, 30(23), 232001 doi: 10.1088/1361-6528/ab0393[4] Ma X, Hartmann N F, Baldwin J K, et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nate Nanotechnol, 2015, 10(8), 671 doi: 10.1038/nnano.2015.136[5] Arita M, Le Roux F, Holmes M J, et al. Ultraclean single photon emission from a GaN quantum dot. Nano Lett, 2017, 17(5), 2902 doi: 10.1021/acs.nanolett.7b00109[6] Aharonovich I, Neu E. Diamond nanophotonics. Adv Opt Mater, 2014, 2(10), 911 doi: 10.1002/adom.v2.10[7] Elke N, Christian H, Michael H, et al. Low-temperature investigations of single silicon vacancy colour centres in diamond. New J Phys, 2013, 15(4), 043005 doi: 10.1088/1367-2630/15/4/043005[8] Aharonovich I, Zhou C, Stacey A, et al. Enhanced single-photon emission in the near infrared from a diamond color center. Phys Rev B, 2009, 79(23), 1377 doi: 10.1103/PhysRevB.79.235316[9] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2(8), 17033 doi: 10.1038/natrevmats.2017.33[10] Srivastava A, Sidler M, Allain A V, et al. Optically active quantum dots in monolayer WSe2. Nat Nanotechnol, 2015, 10(6), 491 doi: 10.1038/nnano.2015.60[11] Chakraborty C, Goodfellow K M, Nick V A. Localized emission from defects in MoSe2 layers. Opt Mater Express, 2016, 6(6), 2081 doi: 10.1364/OME.6.002081[12] Cong C, Shang J, Wang Y, Yu T. Optical properties of 2D semiconductor WS2. Adv Opt Mater, 2018, 6(1), 1700767 doi: 10.1002/adom.201700767[13] Hill H M, Rigosi A F, Roquelet C, et al. Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett, 2015, 15(5), 2992 doi: 10.1021/nl504868p[14] Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 2015, 10(6), 503 doi: 10.1038/nnano.2015.67[15] Chakraborty C, Kinnischtzke L, Goodfellow K M, et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol, 2015, 10(6), 507 doi: 10.1038/nnano.2015.79[16] Ye Y, Dou X, Ding K, et al. Single photon emission from deep-level defects in monolayer WSe2. Phys Rev B, 2017, 95(24), 245313 doi: 10.1103/PhysRevB.95.245313[17] Qiao J D, Mei F H, Ye Y. Single-photon emitters in van der Waals materials. Chin Opt Lett, 2019, 17(2), 020011 doi: 10.3788/COL[18] He Y M, Clark G, Schaibley J R, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 2015, 10(6), 497 doi: 10.1038/nnano.2015.75[19] Tonndorf P, Schwarz S, Kern J, et al. Single-photon emitters in GaSe. 2D Mater, 2017, 4(2), 021010 doi: 10.1088/2053-1583/aa525b[20] Jungwirth N R, Calderon B, Ji Y, et al. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett, 2016, 16(10), 6052 doi: 10.1021/acs.nanolett.6b01987[21] Tran T T, Zachreson C, Berhane A M, et al. Quantum emission from defects in single-crystalline hexagonal boron nitride. Phys Rev Appl, 2016, 5(3), 034005 doi: 10.1103/PhysRevApplied.5.034005[22] Sontheimer B, Braun M, Nikolay N, et al. Photodynamics of quantum emitters in hexagonal boron nitride revealed by low-temperature spectroscopy. Phys Rev B, 2017, 96(12), 121202 doi: 10.1103/PhysRevB.96.121202[23] Shotan Z, Jayakumar H, Considine C R, et al. Photoinduced modification of single-photon emitters in hexagonal boron nitride. ACS Photonics, 2016, 3(12), 2490 doi: 10.1021/acsphotonics.6b00736[24] Schell A W, Tran T T, Takashima H, et al. Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers. APL Photonics, 2016, 1(9), 091302 doi: 10.1063/1.4961684[25] Bourrellier R, Meuret S, Tararan A, et al. Bright UV single photon emission at point defects in h-BN. Nano Lett, 2016, 16(7), 4317 doi: 10.1021/acs.nanolett.6b01368[26] Kianinia M, Regan B, Tawfik S A, et al. Robust solid-state quantum system operating at 800 K. ACS Photonics, 2017, 4(4), 768 doi: 10.1021/acsphotonics.7b00086[27] Exarhos A L, Hopper D A, Patel R N, et al. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat Commun, 2019, 10(1), 222 doi: 10.1038/s41467-018-08185-8[28] Palacios-Berraquero C, Kara D M, Montblanch A R P, et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat Commun, 2017, 8, 15093 doi: 10.1038/NCOMMS15093[29] Branny A, Kumar S, Proux R, et al. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat Commun, 2017, 8, 15053 doi: 10.1038/ncomms15053[30] Xue Y, Wang H, Tan Q, et al. Anomalous pressure characteristics of defects in hexagonal boron nitride flakes. ACS Nano, 2018, 12(7), 7127 doi: 10.1021/acsnano.8b02970[31] Kennard J E, Hadden J P, Marseglia L, et al. On-chip manipulation of single photons from a diamond defect. Phys Rev Lett, 2013, 111(21), 213603 doi: 10.1103/PhysRevLett.111.213603[32] Tran T T, Wang D, Xu Z Q, et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett, 2017, 17(4), 2634 doi: 10.1021/acs.nanolett.7b00444[33] Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics, 2016, 10(10), 631 doi: 10.1038/nphoton.2016.186[34] Xia F, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nat Photonics, 2014, 8(12), 899 doi: 10.1038/nphoton.2014.271[35] Lv R, Robinson J A, Schaak R E, et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Accounts Chem Res, 2015, 48(1), 56 doi: 10.1021/ar5002846[36] Tran T T, Elbadawi C, Totonjian D, et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano, 2016, 10(8), 7331 doi: 10.1021/acsnano.6b03602[37] Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater, 2004, 3(6), 404 doi: 10.1038/nmat1134[38] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11), 699 doi: 10.1038/nnano.2012.193[39] Yuan Z, Kardynal B E, Stevenson R M, et al. Electrically driven single-photon source. Science, 2002, 295(5552), 102 doi: 10.1126/science.1066790[40] Mizuochi N. Electrically driven single photon source at room temperature by using single NV center in diamond. 2013 Conference on Lasers and Electro-Optics, 2013[41] Schwarz S, Kozikov A, Withers F, et al. Electrically pumped single-defect light emitters in WSe2. 2D Mater, 2016, 3(2), 025038 doi: 10.1088/2053-1583/3/2/025038[42] Palacios-Berraquero C, Barbone M, Kara D M, et al. Atomically thin quantum light-emitting diodes. Nat Commun, 2016, 7, 12978 doi: 10.1038/ncomms12978[43] Hapke-Wurst I, Zeitler U, Haug R J, et al. Mapping the g factor anisotropy of InAs self-assembled quantum dots. Physica E, 2002, 12(1–4), 802 doi: 10.1016/S1386-9477(01)00428-3[44] Grosso G, Moon H, Lienhard B, et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun, 2017, 8(1), 705 doi: 10.1038/s41467-017-00810-2[45] Kern J, Niehues I, Tonndorf P, et al. Nanoscale positioning of single-photon emitters in atomically Thin WSe2. Adv Mater, 2016, 28(33), 7101 doi: 10.1002/adma.201600560[46] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. Rev Mod Phys, 2014, 86(4), 1391 doi: 10.1103/RevModPhys.86.1391[47] Burek M J, Cohen J D, Meenehan S M, et al. Diamond optomechanical crystals. Optica, 2016, 3(12), 1404 doi: 10.1364/OPTICA.3.001404[48] Kepesidis K V, Bennett S D, Portolan S, et al. Phonon cooling and lasing with nitrogen-vacancy centers in diamond. Phys Rev B, 2013, 88(6), 064105 doi: 10.1103/PhysRevB.88.064105[49] Togan E, Chu Y, Trifonov A S, et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 2010, 466(7307), 730 doi: 10.1038/nature09256[50] Xu X, Yao W, Xiao D, et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys, 2014, 10(5), 343 doi: 10.1038/nphys2942[51] Chen X, Lu X, Dubey S, et al. Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat Phys, 2018, 15(3), 221 doi: 10.1038/s41567-018-0366-7[52] Zhu H Y, Yi J, Li M Y, et al. Observation of chiral phonons. Science, 2018, 359(6375), 579 doi: 10.1126/science.aar2711[53] Wang L, Xu X, Zhang L, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 2019, 570(7759), 91 doi: 10.1038/s41586-019-1226-z[54] Tran K, Moody G, Wu F, et al. Evidence for moire excitons in van der Waals heterostructures. Nature, 2019, 567(7746), 71 doi: 10.1038/s41586-019-0975-z -
Proportional views