J. Semicond. > 2020, Volume 41 > Issue 10 > 102702

ARTICLES

Suppression of oxygen and carbon impurity deposition in the thermal system of Czochralski monocrystalline silicon

Jing Zhang1, Ding Liu1, and Yani Pan2

+ Author Affiliations

 Corresponding author: Ding Liu, Email: liud@xaut.edu.cn

DOI: 10.1088/1674-4926/41/10/102702

PDF

Turn off MathJax

Abstract: When preparing large monocrystalline silicon materials, severe carbon etching and silicide deposition often occur to the thermal system. Therefore, a suppression method that optimizes the upper insulation structure has been proposed. Assisted by the finite element method, we calculated temperature distribution and carbon deposition of heater and heat shield, made the rule of silicide and temperature distributing in the system, and we explained the formation of impurity deposition. Our results show that the optimized thermal system reduces carbon etching loss on heat components. The lowered pressure of the furnace brings a rapid decrease of silicide deposition. The increase of the argon flow rate effectively inhibits CO and back diffusion. The simulated results agree well with the experiment observations, validating the effectiveness of the proposed method.

Key words: monocrystalline siliconcarbonsilicide depositionthermal system



[1]
Tavakoli M H, Renani E K, Honarmandnia M, et al. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal. J Cryst Growth, 2018, 483, 125 doi: 10.1016/j.jcrysgro.2017.11.021
[2]
Liu D, Zhao X G, Zhao Y. A review of growth process modeling and control of Czochralski silicon single crystal. Control Theory Appl, 2017, 34(1), 1 doi: 10.7641/CTA.2017.60247
[3]
Vegad M, Bhatt N M. Effect of location of zero gauss plane on oxygen concentration at crystal melt interface during growth of magnetic silicon single crystal using Czochralski technique. Proced Technol, 2016, 23, 480 doi: 10.1016/j.protcy.2016.03.053
[4]
Zhao D M, Zhao D G. Analysis of the growth of GaN epitaxy on silicon. J Semicond, 2018, 39(3), 033006 doi: 10.1088/1674-4926/39/3/033006
[5]
Zhang J, Ren J C, Liu D. Effect of crucible rotation and crystal rotation on the oxygen distribution at the solid-liquid interface during the growth of Czochralski monocrystalline silicon under superconducting horizontal magnetic field. Results Phys, 2019, 13, 1 doi: 10.1016/j.rinp.2019.02.063
[6]
Ni Z, Liu D. Numerical simulation of MHD oscillatory mixed convection in CZ crystal growth by lattice Boltzmann method. Results Phys, 2018(10), 882 doi: 10.1016/j.rinp.2018.08.002
[7]
Ran T, Li Y, Chang Q, et al. Experiment and numerical simulation of melt convection and oxygen distribution in 400 mm Czochralski silicon crystal growth. Rare Met, 2017, 36(2), 134 doi: 10.1007/s12598-016-0865-6
[8]
Liu X, Gao B, Kakimoto K. Numerical investigation of carbon contamination during the melting process of Czochralski silicon crystal growth. J Cryst Growth, 2015, 417, 58 doi: 10.1016/j.jcrysgro.2014.07.040
[9]
Lan C W. Recent progress of crystal growth modeling and growth control. Chem Eng Sci, 2004, 59(7), 1437 doi: 10.1016/j.ces.2004.01.010
[10]
Vorob’ev A N, Sid’ko A P, Kalaev V V. Advanced chemical model for analysis of Cz and DS Si-crystal growth. J Cryst Growth, 2014, 386, 226 doi: 10.1016/j.jcrysgro.2013.10.022
[11]
Chao H W, Ding L, Bin J S, et al. Thermo-fluid coupling of unsteady flow in Czochralski crystal growth. Acta Phys Sin, 2015, 64(20), 1 doi: 10.7498/aps.64.208102
[12]
Feng Q L, He Z Q, Chang Q, et al. Effect of rapid thermal annealing ambient on gettering efficiency and surface microstructure in 300 mm CZ silicon wafers. J Semicond, 2008, 29(5), 822
[13]
Liu X, Nakano S, Kakimoto K. Effect of the packing structure of silicon chunks on the melting process and carbon reduction in Czochralski silicon crystal growth. J Cryst Growth, 2017, 468, 595 doi: 10.1016/j.jcrysgro.2016.09.062
[14]
Wang L, Horiuchi T, Sekimoto A, et al. Numerical investigation of the effect of static magnetic field on the TSSG growth of SiC. J Cryst Growth, 2018, 5(498), 140 doi: 10.1016/j.jcrysgro.2018.06.017
[15]
Wang S F, Fan M H, He Y T, et al. Catalytic conversion of biomass-derived polyols into para-xylene over SiO2-modified zeolites. Chin J Chem Phys, 2019, 32, 513 doi: 10.1063/1674-0068/cjcp1901016
[16]
Guan X J, Zhang X Y. Simulation of V/G during Φ450 mm Czochralski grown silicon single crystal growth under the different crystal and crucible rotation rates. International Symposium on Materials Application and Engineering, 2016, 67, 02002
Fig. 1.  (Color online) The chemical reactions in the argon circuit.

Fig. 2.  (Color online) Temperature of heat shield surface, deposition of silicon and silicon compounds, and etching distribution of graphite carbon.

Fig. 3.  (Color online) Temperature inside the heater, deposition of silicon and silicon compounds, and etching distribution of graphite carbon

Fig. 4.  (Color online) Changes in the structure of heat shield cover before and after optimization.

Fig. 5.  (Color online) Temperature distribution and deposition rate of the heat shield before and after optimization.

Fig. 6.  (Color online) Temperature distribution and deposition rate of the heater before and after optimization.

Fig. 7.  (Color online) Silicide distribution and carbon etching on the heat shield under different furnace pressures of the original structure.

Fig. 8.  (Color online) Silicide distribution and carbon etching on the heat shield under different furnace pressures after structural optimization.

Fig. 9.  (Color online) Incremental distribution of $ \mathrm{C}\mathrm{O} $ concentration in the gas after optimizing the insulation structure.

Fig. 10.  (Color online) Incremental distribution of SiO concentration in the gas after optimizing the insulation structure.

Table 1.   Physical parameter settings during crystal growth.

ParameterValue
Feed volume300 kg
Crystal diameter300 mm
Crystal length600 mm (equal-diameter)
Crucible critical speed–1.5 rpm
Crystal critical speed9 rpm
Lifting speed0.65 mm/min
Furnace pressure20 Torr
Argon flow rate100 slm
Gap between melt interface
and heat shield
50 mm
DownLoad: CSV
[1]
Tavakoli M H, Renani E K, Honarmandnia M, et al. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal. J Cryst Growth, 2018, 483, 125 doi: 10.1016/j.jcrysgro.2017.11.021
[2]
Liu D, Zhao X G, Zhao Y. A review of growth process modeling and control of Czochralski silicon single crystal. Control Theory Appl, 2017, 34(1), 1 doi: 10.7641/CTA.2017.60247
[3]
Vegad M, Bhatt N M. Effect of location of zero gauss plane on oxygen concentration at crystal melt interface during growth of magnetic silicon single crystal using Czochralski technique. Proced Technol, 2016, 23, 480 doi: 10.1016/j.protcy.2016.03.053
[4]
Zhao D M, Zhao D G. Analysis of the growth of GaN epitaxy on silicon. J Semicond, 2018, 39(3), 033006 doi: 10.1088/1674-4926/39/3/033006
[5]
Zhang J, Ren J C, Liu D. Effect of crucible rotation and crystal rotation on the oxygen distribution at the solid-liquid interface during the growth of Czochralski monocrystalline silicon under superconducting horizontal magnetic field. Results Phys, 2019, 13, 1 doi: 10.1016/j.rinp.2019.02.063
[6]
Ni Z, Liu D. Numerical simulation of MHD oscillatory mixed convection in CZ crystal growth by lattice Boltzmann method. Results Phys, 2018(10), 882 doi: 10.1016/j.rinp.2018.08.002
[7]
Ran T, Li Y, Chang Q, et al. Experiment and numerical simulation of melt convection and oxygen distribution in 400 mm Czochralski silicon crystal growth. Rare Met, 2017, 36(2), 134 doi: 10.1007/s12598-016-0865-6
[8]
Liu X, Gao B, Kakimoto K. Numerical investigation of carbon contamination during the melting process of Czochralski silicon crystal growth. J Cryst Growth, 2015, 417, 58 doi: 10.1016/j.jcrysgro.2014.07.040
[9]
Lan C W. Recent progress of crystal growth modeling and growth control. Chem Eng Sci, 2004, 59(7), 1437 doi: 10.1016/j.ces.2004.01.010
[10]
Vorob’ev A N, Sid’ko A P, Kalaev V V. Advanced chemical model for analysis of Cz and DS Si-crystal growth. J Cryst Growth, 2014, 386, 226 doi: 10.1016/j.jcrysgro.2013.10.022
[11]
Chao H W, Ding L, Bin J S, et al. Thermo-fluid coupling of unsteady flow in Czochralski crystal growth. Acta Phys Sin, 2015, 64(20), 1 doi: 10.7498/aps.64.208102
[12]
Feng Q L, He Z Q, Chang Q, et al. Effect of rapid thermal annealing ambient on gettering efficiency and surface microstructure in 300 mm CZ silicon wafers. J Semicond, 2008, 29(5), 822
[13]
Liu X, Nakano S, Kakimoto K. Effect of the packing structure of silicon chunks on the melting process and carbon reduction in Czochralski silicon crystal growth. J Cryst Growth, 2017, 468, 595 doi: 10.1016/j.jcrysgro.2016.09.062
[14]
Wang L, Horiuchi T, Sekimoto A, et al. Numerical investigation of the effect of static magnetic field on the TSSG growth of SiC. J Cryst Growth, 2018, 5(498), 140 doi: 10.1016/j.jcrysgro.2018.06.017
[15]
Wang S F, Fan M H, He Y T, et al. Catalytic conversion of biomass-derived polyols into para-xylene over SiO2-modified zeolites. Chin J Chem Phys, 2019, 32, 513 doi: 10.1063/1674-0068/cjcp1901016
[16]
Guan X J, Zhang X Y. Simulation of V/G during Φ450 mm Czochralski grown silicon single crystal growth under the different crystal and crucible rotation rates. International Symposium on Materials Application and Engineering, 2016, 67, 02002
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3313 Times PDF downloads: 50 Times Cited by: 0 Times

    History

    Received: 03 January 2020 Revised: 14 April 2020 Online: Accepted Manuscript: 28 May 2020Uncorrected proof: 02 June 2020Published: 01 October 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jing Zhang, Ding Liu, Yani Pan. Suppression of oxygen and carbon impurity deposition in the thermal system of Czochralski monocrystalline silicon[J]. Journal of Semiconductors, 2020, 41(10): 102702. doi: 10.1088/1674-4926/41/10/102702 ****J Zhang, D Liu, Y N Pan, Suppression of oxygen and carbon impurity deposition in the thermal system of Czochralski monocrystalline silicon[J]. J. Semicond., 2020, 41(10): 102702. doi: 10.1088/1674-4926/41/10/102702.
      Citation:
      Jing Zhang, Ding Liu, Yani Pan. Suppression of oxygen and carbon impurity deposition in the thermal system of Czochralski monocrystalline silicon[J]. Journal of Semiconductors, 2020, 41(10): 102702. doi: 10.1088/1674-4926/41/10/102702 ****
      J Zhang, D Liu, Y N Pan, Suppression of oxygen and carbon impurity deposition in the thermal system of Czochralski monocrystalline silicon[J]. J. Semicond., 2020, 41(10): 102702. doi: 10.1088/1674-4926/41/10/102702.

      Suppression of oxygen and carbon impurity deposition in the thermal system of Czochralski monocrystalline silicon

      DOI: 10.1088/1674-4926/41/10/102702
      More Information
      • Corresponding author: Email: liud@xaut.edu.cn
      • Received Date: 2020-01-03
      • Revised Date: 2020-04-14
      • Published Date: 2020-10-04

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return