Citation: |
Qiaoli Liu, Yajie Feng, Huijun Tian, Xiaoying He, Anqi Hu, Xia Guo. Fabrication of flexible AlGaInP LED[J]. Journal of Semiconductors, 2020, 41(3): 032302. doi: 10.1088/1674-4926/41/3/032302
****
Q L Liu, Y J Feng, H J Tian, X Y He, A Q Hu, X Guo, Fabrication of flexible AlGaInP LED[J]. J. Semicond., 2020, 41(3): 032302. doi: 10.1088/1674-4926/41/3/032302.
|
-
Abstract
Flexible light-emitting diodes (LEDs) are highly desired for wearable devices, flexible displays, robotics, biomedicine, etc. Traditionally, the transfer process of an ultrathin wafer of about 10–30 μm to a flexible substrate is utilized. However, the yield is low, and it is not applicable to thick GaN LED chips with a 100 μm sapphire substrate. In this paper, transferable LED chips utilized the mature LED manufacture technique are developed, which possesses the advantage of high yield. The flexible LED array demonstrates good electrical and optical performance.-
Keywords:
- light-emitting diodes (LEDs),
- flexible,
- transfer,
- performance
-
References
[1] Pattison P M, Hansen M, Tsao J Y. LED lighting efficacy: status and directions. Compt Rend Phys, 2018, 19(3), 134 doi: 10.1016/j.crhy.2017.10.013[2] Nair G B, Dhoble S J. A perspective perception on the applications of light-emitting diodes. Luminescence, 2015, 30(8), 1167 doi: 10.1002/bio.2919[3] Hirayama H, Fujikawa S, Kamata N. Recent progress in AlGaN-based deep-UV LEDs. Electron Commun Jpn, 2015, 98(5), 1 doi: 10.1002/ecj.11667[4] Guilhabert B, Massoubre D, Richardson E, et al. Sub-micron lithography using InGaN micro-LEDs: mask-free fabrication of LED arrays. IEEE Photonic Tech Lett, 2012, 24(24), 2221 doi: 10.1109/LPT.2012.2225612[5] Lee S Y, Park K I, Huh C, et al. Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications. Nano Energy, 2012, 1(1), 145 doi: 10.1016/j.nanoen.2011.07.001[6] Choi M K, Yang J, Kang K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat Commun, 2015, 6, 7149 doi: 10.1038/ncomms8149[7] Kim J, Lee J, Son D, et al. Deformable devices with integrated functional nanomaterials for wearable electronics. Nano Converg, 2016, 3(1), 4 doi: 10.1186/s40580-016-0062-1[8] Zhang Z, Du J, Zhang D, et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat Commun, 2017, 8, 14560 doi: 10.1038/ncomms14560[9] Kim S, Kwon H J, Lee S, et al. Low-power flexible organic light-emitting diode display device. Adv Mater, 2011, 23(31), 3511 doi: 10.1002/adma.201101066[10] Sekitani T, Nakajima H, Maeda H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater, 2009, 8(6), 494 doi: 10.1038/nmat2459[11] Geffroy B, Le Roy P, Prat C. Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym Int, 2006, 55(6), 572 doi: 10.1002/pi.1974[12] Sun Z, Liu Z, Li J, et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv Mater, 2012, 24(43), 5878 doi: 10.1002/adma.201202220[13] Tao L, Chen Z, Li X, et al. Hybrid graphene tunneling photoconductor with interface engineering towards fast photoresponse and high responsivity. npj 2D Mater Appl, 2017, 1(1), 19 doi: 10.1038/s41699-017-0016-4[14] Sun Y L, Xie D, Sun M, et al. Hybrid graphene/cadmium-free ZnSe/ZnS quantum dots phototransistors for UV detection. Sci Rep, 2018, 8(1), 5107 doi: 10.1038/s41598-018-23507-y[15] Sun T, Wang Y, Yu W, et al. Flexible broadband graphene photodetectors enhanced by plasmonic Cu3–xP colloidal nanocrystals. Small, 2017, 13(42), 1701881 doi: 10.1002/smll.201701881[16] Kim R H, Kim D H, Xiao J, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater, 2010, 9(11), 929 doi: 10.1038/nmat2879[17] Gao D, Wang W, Liang Z, et al. Design of micro, flexible light-emitting diode arrays and fabrication of flexible electrodes. J Phys D, 2016, 49(40), 405108 doi: 10.1088/0022-3727/49/40/405108[18] Shervin S, Kim S H, Asadirad M, et al. Bendable III–N visible light-emitting diodes beyond mechanical flexibility: Theoretical study on quantum efficiency improvement and color tunability by external strain. ACS Photon, 2016, 3(3), 486 doi: 10.1021/acsphotonics.5b00745[19] Lin C F, Su C L, Wu H M, et al. Bendable InGaN light-emitting nanomembranes with tunable emission wavelength. ACS Appl Mater Inter, 2018, 10(43), 37725 doi: 10.1021/acsami.8b14506 -
Proportional views